Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(kernopt)
## ----fig.cap='Estimates (gray lines) of count distributions of weight (dg) (black lines) of fish by using optimal and Epanechnikov discrete kernels with bandwidth parameter ($h_{cv}$) from the cross-validation procedure. Integrated Squared Error (ISE) was also calculated.'----
# Data
data("fish_data", package = "kernopt")
y <- fish_data$weight
data1 <- as.data.frame(table(y))
x <- as.numeric(as.character(data1[, 1]))
freq_weight <- as.numeric(as.character(data1[, 2]))
f0 <- freq_weight / sum(freq_weight)
# Optimal kernel
H <- seq((max(y) - min(y)) / 200, (max(y) - min(y)) / 2, length.out = 50)
k <- 1
hcv_opt_k1 <- cv_bandwidth(kernel = "optimal", y, H, k = 1)
fn_opt_k1 <- estim_kernel(kernel = "optimal", x, hcv_opt_k1, y, k = 1)
ISE_opt_k1 <- sum((fn_opt_k1 - f0)^2)
# Epanechnikov
H <- seq(2, 10, 1)
hcv_epanech <- cv_bandwidth(kernel = "epanech", y, H)
fn_epanech <- estim_kernel(kernel = "epanech", x, hcv_epanech, y, k = NULL)
ISE_epanech <- sum((fn_epanech - f0)^2)
# Graph
oldpar <- par(mfrow = c(1, 2))
plot(
x,
f0,
col = "black",
axes = F,
lwd = 3,
ylab = "Probability",
xlab = "Weight (dg)",
ylim = c(0, 0.06),
xlim = c(41, 132),
type = "h",
main = "(a) Optimal k=1 - ISE=0.002, (hcv=0.94)",
cex.axis = 1.70,
cex.lab = 1.70
)
axis(1,
at = x,
cex.axis = 1.70,
cex.lab = 1.70
)
axis(2)
box()
points(
x + 0.4,
fn_opt_k1,
lwd = 3,
col = "grey",
lty = 1,
type = "h"
)
plot(
x,
f0,
col = "black",
axes = F,
lwd = 3,
ylab = "Probability",
xlab = "Weight (dg)",
ylim = c(0, 0.06),
xlim = c(41, 132),
type = "h",
main = "(b) Epanechnikov - ISE=0.0033 (hcv=9)",
cex.axis = 1.70,
cex.lab = 1.70
)
axis(1,
at = x,
cex.axis = 1.70,
cex.lab = 1.70
)
axis(2)
box()
points(
x + 0.4,
fn_epanech,
lwd = 3,
col = "grey",
lty = 1,
type = "h"
)
# Restore option
par(oldpar)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.