Nothing
#' Importance statistics based on forward selection
#'
#' Computes the statistic
#' \deqn{W_j = \max(Z_j, Z_{j+p}) \cdot \mathrm{sgn}(Z_j - Z_{j+p}),}
#' where \eqn{Z_1,\dots,Z_{2p}} give the reverse order in which the 2p
#' variables (the originals and the knockoffs) enter the forward selection
#' model.
#' See the Details for information about forward selection.
#'
#' In \emph{forward selection}, the variables are chosen iteratively to maximize
#' the inner product with the residual from the previous step. The initial
#' residual is always \code{y}. In standard forward selection
#' (\code{stat.forward_selection}), the next residual is the remainder after
#' regressing on the selected variable; when orthogonal matching pursuit
#' is used, the next residual is the remainder
#' after regressing on \emph{all} the previously selected variables.
#'
#' @param X n-by-p matrix of original variables.
#' @param X_k n-by-p matrix of knockoff variables.
#' @param y numeric vector of length n, containing the response variables.
#' @param omp whether to use orthogonal matching pursuit (default: F).
#' @return A vector of statistics \eqn{W} of length p.
#'
#' @family statistics
#'
#' @examples
#' set.seed(2022)
#' p=100; n=100; k=15
#' mu = rep(0,p); Sigma = diag(p)
#' X = matrix(rnorm(n*p),n)
#' nonzero = sample(p, k)
#' beta = 3.5 * (1:p %in% nonzero)
#' y = X %*% beta + rnorm(n)
#' knockoffs = function(X) create.gaussian(X, mu, Sigma)
#'
#' # Basic usage with default arguments
#' result = knockoff.filter(X, y, knockoffs=knockoffs,
#' statistic=stat.forward_selection)
#' print(result$selected)
#'
#' # Advanced usage with custom arguments
#' foo = stat.forward_selection
#' k_stat = function(X, X_k, y) foo(X, X_k, y, omp=TRUE)
#' result = knockoff.filter(X, y, knockoffs=knockoffs, statistic=k_stat)
#' print(result$selected)
#'
#' @rdname stat.forward_selection
#' @export
stat.forward_selection <- function(X, X_k, y, omp=F) {
if( is.numeric(y) ){
y = as.vector(y)
} else {
stop('Knockoff statistic stat.forward_selection requires the input y to be a numeric vector')
}
p = ncol(X)
X = scale(X)
X_k = scale(X_k)
# Randomly swap columns of X and Xk
swap = rbinom(ncol(X),1,0.5)
swap.M = matrix(swap,nrow=nrow(X),ncol=length(swap),byrow=TRUE)
X.swap = X * (1-swap.M) + X_k * swap.M
Xk.swap = X * swap.M + X_k * (1-swap.M)
# Compute statistics
path = fs(cbind(X.swap, Xk.swap), y, omp)
Z = 2*p + 1 - order(path) # Are we recycling here?
orig = 1:p
W = pmax(Z[orig], Z[orig+p]) * sign(Z[orig] - Z[orig+p])
# Correct for swapping of columns of X and Xk
W = W * (1-2*swap)
}
#' Forward selection
#'
#' Perform forward variable selection with or without OMP
#'
#' @param X matrix of predictors
#' @param y response vector
#' @param omp whether to use orthogonal matching pursuit (OMP)
#' @return vector with jth component the variable added at step j
#'
#' @keywords internal
fs <- function(X, y, omp=FALSE) {
n = nrow(X); p = ncol(X)
stopifnot(n == length(y))
path = rep.int(0, p)
in_model = rep(FALSE, p)
residual = y
if (omp) Q = matrix(0, n, p)
for (step in 1:p) {
# Find the best variable to add among the remaining variables.
available_vars = which(!in_model)
products = apply(X[,!in_model,drop=F], 2,
function(x) abs(sum(x * residual)))
best_var = available_vars[which.max(products)][1]
path[step] = best_var
in_model[best_var] = TRUE
# Update the residual.
x = X[,best_var]
if (step == p) break
if (omp) {
for (j in seq(1, length.out=step-1))
x = x - Q[,j]%*%x * Q[,j]
q = x / sqrt(sum(x^2))
Q[,step] = q
residual = residual - (q%*%y)[1] * q
}
else {
residual = residual - (x %*% residual)[1] * x
}
}
return(path)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.