Nothing
#' Importance statistics based on a GLM
#'
#' Fits a generalized linear model via penalized maximum likelihood and
#' computes the difference statistic
#' \deqn{W_j = Z_j - \tilde{Z}_j}
#' where \eqn{Z_j} and \eqn{\tilde{Z}_j} are the maximum values of the
#' regularization parameter \eqn{\lambda} at which the jth variable
#' and its knockoff enter the model, respectively.
#'
#' @param X n-by-p matrix of original variables.
#' @param X_k n-by-p matrix of knockoff variables.
#' @param y vector of length n, containing the response variables. Quantitative for family="gaussian",
#' or family="poisson" (non-negative counts). For family="binomial"
#' should be either a factor with two levels, or a two-column matrix of counts
#' or proportions (the second column is treated as the target class; for a factor,
#' the last level in alphabetical order is the target class). For family="multinomial",
#' can be a nc>=2 level factor, or a matrix with nc columns of counts or proportions.
#' For either "binomial" or "multinomial", if y is presented as a vector, it will
#' be coerced into a factor. For family="cox", y should be a two-column matrix with
#' columns named 'time' and 'status'. The latter is a binary variable, with '1'
#' indicating death, and '0' indicating right censored. The function Surv() in
#' package survival produces such a matrix. For family="mgaussian", y is a matrix
#' of quantitative responses.
#' @param family response type (see above).
#' @param ... additional arguments specific to \code{glmnet} (see Details).
#' @return A vector of statistics \eqn{W} of length p.
#'
#' @details This function uses \code{glmnet} to compute the regularization path
#' on a fine grid of \eqn{\lambda}'s.
#'
#' The \code{nlambda} parameter can be used to control the granularity of the
#' grid of \eqn{\lambda}'s. The default value of \code{nlambda} is \code{500}.
#'
#' If the family is 'binomial' and a lambda sequence is not provided by the user,
#' this function generates it on a log-linear scale before calling 'glmnet'.
#'
#' The default response family is 'gaussian', for a linear regression model.
#' Different response families (e.g. 'binomial') can be specified by passing an
#' optional parameter 'family'.
#'
#' For a complete list of the available additional arguments, see \code{\link[glmnet]{glmnet}}.
#'
#' @family statistics
#'
#' @examples
#' set.seed(2022)
#' p=200; n=100; k=15
#' mu = rep(0,p); Sigma = diag(p)
#' X = matrix(rnorm(n*p),n)
#' nonzero = sample(p, k)
#' beta = 3.5 * (1:p %in% nonzero)
#' y = X %*% beta + rnorm(n)
#' knockoffs = function(X) create.gaussian(X, mu, Sigma)
#'
#' # Basic usage with default arguments
#' result = knockoff.filter(X, y, knockoffs=knockoffs,
#' statistic=stat.glmnet_lambdadiff)
#' print(result$selected)
#'
#' # Advanced usage with custom arguments
#' foo = stat.glmnet_lambdadiff
#' k_stat = function(X, X_k, y) foo(X, X_k, y, nlambda=200)
#' result = knockoff.filter(X, y, knockoffs=knockoffs, statistic=k_stat)
#' print(result$selected)
#'
#' @rdname stat.glmnet_lambdadiff
#' @export
stat.glmnet_lambdadiff <- function(X, X_k, y, family='gaussian', ...) {
# Randomly swap columns of X and Xk
swap = rbinom(ncol(X),1,0.5)
swap.M = matrix(swap,nrow=nrow(X),ncol=length(swap),byrow=TRUE)
X.swap = X * (1-swap.M) + X_k * swap.M
Xk.swap = X * swap.M + X_k * (1-swap.M)
# Compute statistics
Z = lasso_max_lambda(cbind(X.swap, Xk.swap), y, method='glmnet', family=family, ...)
p = ncol(X)
orig = 1:p
W = Z[orig] - Z[orig+p]
# Correct for swapping of columns of X and Xk
W = W * (1-2*swap)
}
#' GLM statistics for knockoff
#'
#' Computes the signed maximum statistic
#' \deqn{W_j = \max(Z_j, \tilde{Z}_j) \cdot \mathrm{sgn}(Z_j - \tilde{Z}_j),}
#' where \eqn{Z_j} and \eqn{\tilde{Z}_j} are the maximum values of
#' \eqn{\lambda} at which the jth variable and its knockoff, respectively,
#' enter the generalized linear model.
#'
#' @param X n-by-p matrix of original variables.
#' @param X_k n-by-p matrix of knockoff variables.
#' @param y vector of length n, containing the response variables. Quantitative for family="gaussian",
#' or family="poisson" (non-negative counts). For family="binomial"
#' should be either a factor with two levels, or a two-column matrix of counts
#' or proportions (the second column is treated as the target class; for a factor,
#' the last level in alphabetical order is the target class). For family="multinomial",
#' can be a nc>=2 level factor, or a matrix with nc columns of counts or proportions.
#' For either "binomial" or "multinomial", if y is presented as a vector, it will
#' be coerced into a factor. For family="cox", y should be a two-column matrix with
#' columns named 'time' and 'status'. The latter is a binary variable, with '1'
#' indicating death, and '0' indicating right censored. The function Surv() in
#' package survival produces such a matrix. For family="mgaussian", y is a matrix
#' of quantitative responses.
#' @param family response type (see above).
#' @param ... additional arguments specific to \code{glmnet} (see Details).
#' @return A vector of statistics \eqn{W} of length p.
#'
#' @details This function uses \code{glmnet} to compute the regularization path
#' on a fine grid of \eqn{\lambda}'s.
#'
#' The additional \code{nlambda}
#' parameter can be used to control the granularity of the grid of \eqn{\lambda} values.
#' The default value of \code{nlambda} is \code{500}.
#'
#' If the family is 'binomial' and a lambda sequence is not provided by the user,
#' this function generates it on a log-linear scale before calling 'glmnet'.
#'
#' For a complete list of the available additional arguments, see \code{\link[glmnet]{glmnet}}.
#'
#' @examples
#' p=200; n=100; k=15
#' mu = rep(0,p); Sigma = diag(p)
#' X = matrix(rnorm(n*p),n)
#' nonzero = sample(p, k)
#' beta = 3.5 * (1:p %in% nonzero)
#' y = X %*% beta + rnorm(n)
#' knockoffs = function(X) create.gaussian(X, mu, Sigma)
#'
#' # Basic usage with default arguments
#' result = knockoff.filter(X, y, knockoff=knockoffs,
#' statistic=stat.glmnet_lambdasmax)
#' print(result$selected)
#'
#' # Advanced usage with custom arguments
#' foo = stat.glmnet_lambdasmax
#' k_stat = function(X, X_k, y) foo(X, X_k, y, nlambda=200)
#' result = knockoff.filter(X, y, knockoffs=knockoffs, statistic=k_stat)
#' print(result$selected)
#'
#' @rdname stat.glmnet_lambdasmax
#' @export
stat.glmnet_lambdasmax <- function(X, X_k, y, family='gaussian', ...) {
# Randomly swap columns of X and Xk
swap = rbinom(ncol(X),1,0.5)
swap.M = matrix(swap,nrow=nrow(X),ncol=length(swap),byrow=TRUE)
X.swap = X * (1-swap.M) + X_k * swap.M
Xk.swap = X * swap.M + X_k * (1-swap.M)
# Compute statistics
Z = lasso_max_lambda(cbind(X.swap, Xk.swap), y, method='glmnet', family=family, ...)
p = ncol(X)
orig = 1:p
W = pmax(Z[orig], Z[orig+p]) * sign(Z[orig] - Z[orig+p])
# Correct for swapping of columns of X and Xk
W = W * (1-2*swap)
}
#' @keywords internal
lasso_max_lambda_lars <- function(X, y, ...) {
if (!requireNamespace('lars', quietly=T))
stop('lars is not installed', call.=F)
fit <- lars::lars(X, y, normalize=T, intercept=F, ...)
lambda <- rep(0, ncol(X))
for (j in 1:ncol(X)) {
entry <- fit$entry[j]
if (entry > 0) lambda[j] <- fit$lambda[entry]
}
return(lambda)
}
#' @keywords internal
lasso_max_lambda_glmnet <- function(X, y, nlambda=500, intercept=T, standardize=T, ...) {
if (!requireNamespace('glmnet', quietly=T))
stop('glmnet is not installed', call.=F)
# Standardize the variables
if( standardize ){
X = scale(X)
}
n = nrow(X); p = ncol(X)
if (!methods::hasArg(family) ) family = "gaussian"
else family = list(...)$family
if (!methods::hasArg(lambda) ) {
if( identical(family, "gaussian") ) {
if(!is.numeric(y)) {
stop('Input y must be numeric.')
}
# Unless a lambda sequence is provided by the user, generate it
lambda_max = max(abs(t(X) %*% y)) / n
lambda_min = lambda_max / 2e3
k = (0:(nlambda-1)) / nlambda
lambda = lambda_max * (lambda_min/lambda_max)^k
}
else {
lambda = NULL
}
}
fit <- glmnet::glmnet(X, y, lambda=lambda, intercept=intercept, standardize=F, standardize.response=F, ...)
first_nonzero <- function(x) match(T, abs(x) > 0) # NA if all(x==0)
if(family=="multinomial") {
indices <- sapply(fit$beta, function(beta) apply(beta, 1, first_nonzero))
indices <- apply(indices, 1, min)
} else {
indices <- apply(fit$beta, 1, first_nonzero)
}
names(indices) <- NULL
ifelse(is.na(indices), 0, fit$lambda[indices] * n)
}
#' Maximum lambda in lasso model
#'
#' Computes the earliest (largest) lambda's for which predictors enter the
#' lasso model.
#'
#' @param X matrix of predictors
#' @param y response vector
#' @param method either 'glmnet' or 'lars'
#' @return vector of maximum lambda's
#'
#' @keywords internal
lasso_max_lambda <- function(X, y, method=c('glmnet','lars'), ...) {
switch(match.arg(method),
glmnet = lasso_max_lambda_glmnet(X,y,...),
lars = lasso_max_lambda_lars(X,y,...)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.