R/labeling.R

Defines functions thayer sparks gnuplot .matplotlib.scale.range matplotlib rpretty nelder extended.figures extended .legibility .density.max .density .coverage.max .coverage .simplicity.max .simplicity .wilkinson.nice.scale wilkinson .heckbert.nicenum heckbert

Documented in .coverage .coverage.max .density .density.max extended extended.figures gnuplot heckbert .heckbert.nicenum .legibility matplotlib nelder rpretty .simplicity .simplicity.max sparks thayer wilkinson .wilkinson.nice.scale

#' Functions for positioning tick labels on axes
#'
#' \tabular{ll}{
#' Package: \tab labeling\cr
#' Type: \tab Package\cr
#' Version: \tab 0.2\cr
#' Date: \tab 2011-04-01\cr
#' License: \tab Unlimited\cr
#' LazyLoad: \tab yes\cr
#' }
#' 
#' Implements a number of axis labeling schemes, including those 
#' compared in An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes
#' by Talbot, Lin, and Hanrahan, InfoVis 2010.
#'
#' @name labeling-package
#' @aliases labeling
#' @docType package
#' @title Axis labeling
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @references
#' Heckbert, P. S. (1990) Nice numbers for graph labels, Graphics Gems I, Academic Press Professional, Inc.
#' Wilkinson, L. (2005) The Grammar of Graphics, Springer-Verlag New York, Inc.
#' Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes, InfoVis 2010.
#' @keywords dplot
#' @seealso \code{\link{extended}}, \code{\link{wilkinson}}, \code{\link{heckbert}}, \code{\link{rpretty}}, \code{\link{gnuplot}}, \code{\link{matplotlib}}, \code{\link{nelder}}, \code{\link{sparks}}, \code{\link{thayer}}, \code{\link{pretty}}
#' @examples
#' heckbert(8.1, 14.1, 4)	# 5 10 15
#' wilkinson(8.1, 14.1, 4)	# 8 9 10 11 12 13 14 15
#' extended(8.1, 14.1, 4)	# 8 10 12 14

#' # When plotting, extend the plot range to include the labeling
#' # Should probably have a helper function to make this easier
#' data(iris)
#' x <- iris$Sepal.Width
#' y <- iris$Sepal.Length
#' xl <- extended(min(x), max(x), 6)
#' yl <- extended(min(y), max(y), 6)
#' plot(x, y, 
#'     xlim=c(min(x,xl),max(x,xl)), 
#'     ylim=c(min(y,yl),max(y,yl)), 
#'     axes=FALSE, main="Extended labeling")
#' axis(1, at=xl)
#' axis(2, at=yl)
c()



#' Heckbert's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @return vector of axis label locations
#' @references
#' Heckbert, P. S. (1990) Nice numbers for graph labels, Graphics Gems I, Academic Press Professional, Inc.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
heckbert <- function(dmin, dmax, m)
{
    range <- .heckbert.nicenum((dmax-dmin), FALSE)
    lstep <- .heckbert.nicenum(range/(m-1), TRUE)
    lmin <- floor(dmin/lstep)*lstep
    lmax <- ceiling(dmax/lstep)*lstep
    seq(lmin, lmax, by=lstep)
}
    
.heckbert.nicenum <- function(x, round)
{
	e <- floor(log10(x))
	f <- x / (10^e)
	if(round)
	{
		if(f < 1.5) nf <- 1
		else if(f < 3) nf <- 2
		else if(f < 7) nf <- 5
		else nf <- 10
	}
	else
	{
		if(f <= 1) nf <- 1
		else if(f <= 2) nf <- 2
		else if(f <= 5) nf <- 5
		else nf <- 10
	}
	nf * (10^e)
}



#' Wilkinson's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @param Q set of nice numbers
#' @param mincoverage minimum ratio between the the data range and the labeling range, controlling the whitespace around the labeling (default = 0.8)
#' @param mrange range of \code{m}, the number of tick marks, that should be considered in the optimization search
#' @return vector of axis label locations
#' @note Ported from Wilkinson's Java implementation with some changes.
#'	Changes: 	1) m (the target number of ticks) is hard coded in Wilkinson's implementation as 5. 
#'						Here we allow it to vary as a parameter. Since m is fixed, 
#'						Wilkinson only searches over a fixed range 4-13 of possible resulting ticks.
#'						We broadened the search range to max(floor(m/2),2) to ceiling(6*m), 
#'						which is a larger range than Wilkinson considers for 5 and allows us to vary m,
#'						including using non-integer values of m.
#'				2) Wilkinson's implementation assumes that the scores are non-negative. But, his revised
#'						granularity function can be extremely negative. We tweaked the code to allow negative scores.
#'						We found that this produced better labelings.
#'				3) We added 10 to Q. This seemed to be necessary to get steps of size 1.
#'	It is possible for this algorithm to find no solution.
#'					In Wilkinson's implementation, instead of failing, he returns the non-nice labels spaced evenly from min to max.
#'					We want to detect this case, so we return NULL. If this happens, the search range, mrange, needs to be increased.
#' @references
#' Wilkinson, L. (2005) The Grammar of Graphics, Springer-Verlag New York, Inc.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
wilkinson <-function(dmin, dmax, m, Q = c(1,5,2,2.5,3,4,1.5,7,6,8,9), mincoverage = 0.8, mrange=max(floor(m/2),2):ceiling(6*m))
{
	best <- NULL
	for(k in mrange)
	{
		result <- .wilkinson.nice.scale(dmin, dmax, k, Q, mincoverage, mrange, m)
		if(!is.null(result) && (is.null(best) || result$score > best$score))
		{
			best <- result
		}
	}
	seq(best$lmin, best$lmax, by=best$lstep)
}

.wilkinson.nice.scale <- function(min, max, k, Q = c(1,5,2,2.5,3,4,1.5,7,6,8,9), mincoverage = 0.8, mrange=c(), m=k)
{
	Q <- c(10, Q)

	range <- max-min
	intervals <- k-1
	granularity <- 1 - abs(k-m)/m

	delta <- range / intervals
	base <- floor(log10(delta))
	dbase <- 10^base

	best <- NULL
	for(i in 1:length(Q))
	{
		tdelta <- Q[i] * dbase
		tmin <- floor(min/tdelta) * tdelta
		tmax <- tmin + intervals * tdelta

		if(tmin <= min && tmax >= max)
		{
			roundness <- 1 - ((i-1) - ifelse(tmin <= 0 && tmax >= 0, 1, 0)) / length(Q)
			coverage <- (max-min)/(tmax-tmin)
			if(coverage > mincoverage)
			{
				tnice <- granularity + roundness + coverage

				## Wilkinson's implementation contains code to favor certain ranges of labels
				## e.g. those balanced around or anchored at 0, etc.
				## We did not evaluate this type of optimization in the paper, so did not include it.
				## Obviously this optimization component could also be added to our function.
				#if(tmin == -tmax || tmin == 0 || tmax == 1 || tmax == 100)
				#	tnice <- tnice + 1
				#if(tmin == 0 && tmax == 1 || tmin == 0 && tmax == 100)
				#	tnice <- tnice + 1

				if(is.null(best) || tnice > best$score)
				{
					best <- list(lmin=tmin,
							 lmax=tmax,
							 lstep=tdelta,
					      	 score=tnice
						)
				}
			}
		}
	}
	best
}




## The Extended-Wilkinson algorithm described in the paper.

## Our scoring functions, including the approximations for limiting the search
.simplicity <- function(q, Q, j, lmin, lmax, lstep)
{
	eps <- .Machine$double.eps * 100

	n <- length(Q)
	i <- match(q, Q)[1]
	v <- ifelse( (lmin %% lstep < eps || lstep - (lmin %% lstep) < eps) && lmin <= 0 && lmax >=0, 1, 0)

	1 - (i-1)/(n-1) - j + v
}

.simplicity.max <- function(q, Q, j)
{
	n <- length(Q)
	i <- match(q, Q)[1]
	v <- 1

	1 - (i-1)/(n-1) - j + v
}

.coverage <- function(dmin, dmax, lmin, lmax)
{
	range <- dmax-dmin
	1 - 0.5 * ((dmax-lmax)^2+(dmin-lmin)^2) / ((0.1*range)^2)
}

.coverage.max <- function(dmin, dmax, span)
{
	range <- dmax-dmin
	if(span > range)
	{
		half <- (span-range)/2
		1 - 0.5 * (half^2 + half^2) / ((0.1 * range)^2)
	}
	else
	{
		1
	}
}

.density <- function(k, m, dmin, dmax, lmin, lmax)
{
	r <- (k-1) / (lmax-lmin)
	rt <- (m-1) / (max(lmax,dmax)-min(dmin,lmin))
	2 - max( r/rt, rt/r )
}

.density.max <- function(k, m)
{
	if(k >= m)
		2 - (k-1)/(m-1)
	else
		1
}

.legibility <- function(lmin, lmax, lstep)
{
	1			## did all the legibility tests in C#, not in R.
}


#' An Extension of Wilkinson's Algorithm for Position Tick Labels on Axes
#'
#' \code{extended} is an enhanced version of Wilkinson's optimization-based axis labeling approach. It is described in detail in our paper. See the references.
#' 
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @param Q set of nice numbers
#' @param only.loose if true, the extreme labels will be outside the data range
#' @param w weights applied to the four optimization components (simplicity, coverage, density, and legibility)
#' @return vector of axis label locations
#' @references
#' Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes, InfoVis 2010.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
extended <- function(dmin, dmax, m, Q=c(1,5,2,2.5,4,3), only.loose=FALSE, w=c(0.25,0.2,0.5,0.05))
{
	eps <- .Machine$double.eps * 100
	
	if(dmin > dmax) {
		temp <- dmin
		dmin <- dmax
		dmax <- temp
	}

	if(dmax - dmin < eps) {
		#if the range is near the floating point limit,
		#let seq generate some equally spaced steps.
		return(seq(from=dmin, to=dmax, length.out=m))
	}
	
	if((dmax - dmin) > sqrt(.Machine$double.xmax)) {
    #if the range is too large
    #let seq generate some equally spaced steps.
    return(seq(from=dmin, to=dmax, length.out=m))
  }

	n <- length(Q)

	best <- list()
	best$score <- -2
	
	j <- 1
	while(j < Inf)
	{
		for(q in Q)
		{
			sm <- .simplicity.max(q, Q, j)

			if((w[1]*sm+w[2]+w[3]+w[4]) < best$score)
			{
				j <- Inf
				break
			}
		
			k <- 2
			while(k < Inf)													# loop over tick counts
			{		
				dm <- .density.max(k, m)

				if((w[1]*sm+w[2]+w[3]*dm+w[4]) < best$score)
					break
			
				delta <- (dmax-dmin)/(k+1)/j/q
				z <- ceiling(log(delta, base=10))

				while(z < Inf)
				{			
					step <- j*q*10^z

					cm <- .coverage.max(dmin, dmax, step*(k-1))

					if((w[1]*sm+w[2]*cm+w[3]*dm+w[4]) < best$score)
						break
					
					min_start <- floor(dmax/(step))*j - (k - 1)*j
					max_start <- ceiling(dmin/(step))*j

					if(min_start > max_start)
					{
						z <- z+1
						next
					}

					for(start in min_start:max_start)
					{
						lmin <- start * (step/j)
						lmax <- lmin + step*(k-1)
						lstep <- step

						s <- .simplicity(q, Q, j, lmin, lmax, lstep)
						c <- .coverage(dmin, dmax, lmin, lmax)						
						g <- .density(k, m, dmin, dmax, lmin, lmax)
						l <- .legibility(lmin, lmax, lstep)						

						score <- w[1]*s + w[2]*c + w[3]*g + w[4]*l

						if(score > best$score && (!only.loose || (lmin <= dmin && lmax >= dmax)))
						{
							best <- list(lmin=lmin,
								 lmax=lmax,
								 lstep=lstep,
						         score=score)
						}
					}
					z <- z+1
				}				
				k <- k+1
			}
		}
		j <- j + 1		
	}

	seq(from=best$lmin, to=best$lmax, by=best$lstep)
}



## Quantitative evaluation plots (Figures 2 and 3 in the paper)


#' Generate figures from An Extension of Wilkinson's Algorithm for Position Tick Labels on Axes
#'
#' Generates Figures 2 and 3 from our paper.
#' 
#' @param samples number of samples to use (in the paper we used 10000, but that takes awhile to run).
#' @return produces plots as a side effect
#' @references
#' Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes, InfoVis 2010.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
extended.figures <- function(samples = 100)
{
	oldpar <- par()
	par(ask=TRUE)
	
	a <- runif(samples, -100, 400)
	b <- runif(samples, -100, 400)
	low <- pmin(a,b)
	high <- pmax(a,b)
	ticks <- runif(samples, 2, 10)

	generate.labelings <- function(labeler, dmin, dmax, ticks, ...)
	{
		mapply(labeler, dmin, dmax, ticks, SIMPLIFY=FALSE, MoreArgs=list(...))
	}
	
	h1 <- generate.labelings(heckbert, low, high, ticks)
	w1 <- generate.labelings(wilkinson, low, high, ticks, mincoverage=0.8)
	f1 <- generate.labelings(extended, low, high, ticks, only.loose=TRUE)
	e1 <- generate.labelings(extended, low, high, ticks)
	
	figure2 <- function(r, names)
	{
		for(i in 1:length(r))
		{
			d <- r[[i]]
			
			#plot coverage
			cover <- sapply(d, function(x) {max(x)-min(x)})/(high-low)
			hist(cover, breaks=seq(from=-0.01,to=1000,by=0.02), xlab="", ylab=names[i], main=ifelse(i==1, "Density", ""), col="darkgray", lab=c(3,3,3), xlim=c(0.5,3.5), ylim=c(0,0.12*samples), axes=FALSE, border=FALSE)
			#hist(cover)
			axis(side=1, at=c(0,1,2,3,4), xlab="hello", line=-0.1, lwd=0.5)
			
			# plot density
			dens <- sapply(d, length) / ticks
			hist(dens, breaks=seq(from=-0.01,to=10,by=0.02), xlab="", ylab=names[i], main=ifelse(i==1, "Density", ""), col="darkgray", lab=c(3,3,3), xlim=c(0.5,3.5), ylim=c(0,0.06*samples), axes=FALSE, border=FALSE)
			axis(side=1, at=c(0,1,2,3,4), xlab="hello", line=-0.1, lwd=0.5)
		}
	}

	par(mfrow=c(4, 2), mar=c(0.5,1.85,1,0), oma=c(1,0,1,0), mgp=c(0,0.5,-0.3), font.main=1, font.lab=1, cex.lab=1, cex.main=1, tcl=-0.2)
	figure2(list(h1,w1, f1, e1), names=c("Heckbert", "Wilkinson", "Extended\n(loose)", "Extended\n(flexible)"))

	figure3 <- function(r, names)
	{
		for(i in 1:length(r))
		{
			d <- r[[i]]
			steps <- sapply(d, function(x) round(median(diff(x)), 2))
			steps <- steps / (10^floor(log10(steps)))
			tab <- table(steps)
			barplot(rev(tab), xlim=c(0,0.4*samples), horiz=TRUE, xlab=ifelse(i==1,"Frequency",""), xaxt='n', yaxt='s', las=1, main=names[i], border=NA, col="gray")
		}
	}
	
	par(mfrow=c(1,4), mar=c(0.5, 0.75, 2, 0.5), oma=c(0,2,1,1), mgp=c(0,0.75,-0.3), cex.lab=1, cex.main=1)
	figure3(list(h1,w1, f1, e1), names=c("Heckbert", "Wilkinson", "Extended\n(loose)", "Extended\n(flexible)"))
	par(oldpar)
}



#' Nelder's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @param Q set of nice numbers
#' @return vector of axis label locations
#' @references
#' Nelder, J. A. (1976) AS 96. A Simple Algorithm for Scaling Graphs, Journal of the Royal Statistical Society. Series C., pp. 94-96.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
nelder <- function(dmin, dmax, m, Q = c(1,1.2,1.6,2,2.5,3,4,5,6,8,10))
{
	ntick <- floor(m)
	tol <- 5e-6
	bias <- 1e-4

	intervals <- m-1
	x <- abs(dmax)
	if(x == 0) x <- 1
	if(!((dmax-dmin)/x > tol))
	{
		## special case handling for very small ranges. Not implemented yet.
	}

	step <- (dmax-dmin)/intervals
	s <- step

	while(s <= 1)
		s <- s*10
	while(s > 10)
		s <- s/10

	x <- s-bias
	unit <- 1
	for(i in 1:length(Q))
	{
		if(x < Q[i])
		{
			unit <- i
			break
		}
	}
	step <- step * Q[unit] / s
	range <- step*intervals

	x <- 0.5 * (1+ (dmin+dmax-range) / step)
	j <- floor(x-bias)
	valmin <- step * j

	if(dmin > 0 && range >= dmax)
		valmin <- 0
	valmax <- valmin + range

	if(!(dmax > 0 || range < -dmin))
	{
		valmax <- 0
		valmin <- -range
	}

	seq(from=valmin, to=valmax, by=step)
}


#' R's pretty algorithm implemented in R
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @param n number of axis intervals (specify one of \code{m} or \code{n})
#' @param min.n nonnegative integer giving the \emph{minimal} number of intervals. If \code{min.n == 0}, \code{pretty(.)} may return a single value.
#' @param shrink.sml positive numeric by a which a default scale is shrunk in the case when \code{range(x)} is very small (usually 0).
#' @param high.u.bias non-negative numeric, typically \code{> 1}. The interval unit is determined as \code{\{1,2,5,10\}} times \code{b}, a power of 10. Larger \code{high.u.bias} values favor larger units.
#' @param u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and 'optimal': \code{u5.bias = .5 + 1.5*high.u.bias}.
#' @return vector of axis label locations
#' @references
#' Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) \emph{The New S Language}. Wadsworth & Brooks/Cole.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
rpretty <- function(dmin, dmax, m=6, n=floor(m)-1, min.n=n%/%3, shrink.sml = 0.75, high.u.bias=1.5, u5.bias=0.5 + 1.5*high.u.bias)
{
	ndiv <- n
	h <- high.u.bias
	h5 <- u5.bias

	dx <- dmax-dmin
	if(dx==0 && dmax==0)
	{
		cell <- 1
		i_small <- TRUE
		U <- 1
	}
	else
	{
		cell <- max(abs(dmin), abs(dmax))
		U <- 1 + ifelse(h5 >= 1.5*h+0.5, 1/(1+h), 1.5/(1+h5))
		i_small = dx < (cell * U * max(1, ndiv) * 1e-07 * 3)
	}

	if(i_small)
	{
		if(cell > 10)
		{
			cell <- 9+cell/10
		}
    	cell <- cell * shrink.sml
		if(min.n > 1) cell <- cell/min.n
	}	
	else
	{
		cell <- dx
		if(ndiv > 1) cell <- cell/ndiv
	}

	if(cell < 20 * 1e-07)
		cell <- 20 * 1e-07
	
	base <- 10^floor(log10(cell))

	unit <- base

	if((2*base)-cell < h*(cell-unit))
	{
		unit <- 2*base
		if((5*base)-cell < h5*(cell-unit))
		{
			unit <- 5*base
			if((10*base)-cell < h*(cell-unit))
				unit <- 10*base
		}
	}

	# track down lattice labelings...

	## Maybe used to correct for the epsilon here??
	ns <- floor(dmin/unit + 1e-07)
	nu <- ceiling(dmax/unit - 1e-07)

	## Extend the range out beyond the data. Does this ever happen??
	while(ns*unit > dmin+(1e-07*unit)) ns <- ns-1
	while(nu*unit < dmax-(1e-07*unit)) nu <- nu+1


	## If we don't have quite enough labels, extend the range out to make more (these labels are beyond the data :( )
	k <- floor(0.5 + nu-ns)
	if(k < min.n)
	{
		k <- min.n - k
		if(ns >=0)
		{
			nu <- nu + k/2
			ns <- ns - k/2 + k%%2
		}
		else
		{
			ns <- ns - k/2
			nu <- nu + k/2 + k%%2
		}
		ndiv <- min.n
	}
	else
	{
		ndiv <- k
	}

	graphmin <- ns*unit
	graphmax <- nu*unit

	seq(from=graphmin, to=graphmax, by=unit)
}

#' Matplotlib's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @return vector of axis label locations
#' @references
#' \url{http://matplotlib.sourceforge.net/}
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
matplotlib <- function(dmin, dmax, m)
{
	steps <- c(1,2,5,10)
	nbins <- m
	trim <- TRUE

	vmin <- dmin
	vmax <- dmax
	params <- .matplotlib.scale.range(vmin, vmax, nbins)
	scale <- params[1]
	offset <- params[2]

	vmin <- vmin-offset
	vmax <- vmax-offset

	rawStep <- (vmax-vmin)/nbins
	scaledRawStep <- rawStep/scale

	bestMax <- vmax
	bestMin <- vmin

	scaledStep <- 1
	chosenFactor <- 1

	for (step in steps)
	{
		if (step >= scaledRawStep)
		{
			scaledStep <- step*scale
			chosenFactor <- step
			bestMin <- scaledStep * floor(vmin/scaledStep)
			bestMax <- bestMin + scaledStep*nbins
			if (bestMax >= vmax)
				break
		}
	}
	if (trim)
	{
		extraBins <- floor((bestMax-vmax)/scaledStep)
		nbins <- nbins-extraBins
	}
	graphMin <- bestMin+offset
	graphMax <- graphMin+nbins*scaledStep

	seq(from=graphMin, to=graphMax, by=scaledStep)
}

.matplotlib.scale.range <- function(min, max, bins)
{
	threshold <- 100
	dv <- abs(max-min)
	maxabsv<-max(abs(min), abs(max))
	if (maxabsv == 0 || dv/maxabsv<10^-12)
		return(c(1, 0))

	meanv <- 0.5*(min+max)

	if ((abs(meanv)/dv) < threshold)
		offset<- 0
	else if (meanv>0)
	{
		exp<-floor(log10(meanv))
		offset = 10.0^exp
	} else
	{
		exp <- floor(log10(-1*meanv))
		offset <- -10.0^exp
	}
	exp <- floor(log10(dv/bins))
	scale = 10.0^exp
	c(scale, offset)
}



#' gnuplot's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @return vector of axis label locations
#' @references
#' \url{http://www.gnuplot.info/}
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
gnuplot <- function(dmin, dmax, m)
{
	ntick <- floor(m)
	power <- 10^floor(log10(dmax-dmin))
	norm_range <- (dmax-dmin)/power
	p <- (ntick-1) / norm_range

	if(p > 40)
		t <- 0.05
	else if(p > 20)
		t <- 0.1
	else if(p > 10)
		t <- 0.2
	else if(p > 4)
		t <- 0.5
	else if(p > 2)
		t <- 1
	else if(p > 0.5)
		t <- 2
	else
		t <- ceiling(norm_range)

	d <- t*power
	graphmin <- floor(dmin/d) * d
	graphmax <- ceiling(dmax/d) * d

	seq(from=graphmin, to=graphmax, by=d)
}



#' Sparks' labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @return vector of axis label locations
#' @references
#' Sparks, D. N. (1971) AS 44. Scatter Diagram Plotting, Journal of the Royal Statistical Society. Series C., pp. 327-331.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
sparks <- function(dmin, dmax, m)
{
	fm <- m-1
	ratio <- 0
	key <- 1
	kount <- 0
	r <- dmax-dmin
	b <- dmin
	
	while(ratio <= 0.8)
	{
		while(key <= 2)
		{
			while(r <= 1)
			{
				kount <- kount + 1
				r <- r*10
			}
			while(r > 10)
			{
				kount <- kount - 1
				r <- r/10
			}

			b <- b*(10^kount)
			if( b < 0 && b != trunc(b)) b <- b-1
			b <- trunc(b)/(10^kount)
			r <- (dmax-b)/fm
			kount <- 0
			key <- key+2
		}
	
		fstep <- trunc(r)
		if(fstep != r) fstep <- fstep+1
		if(r < 1.5) fstep <- fstep-0.5
		fstep <- fstep/(10^kount)
		ratio <- (dmax - dmin)*(fm*fstep)
		kount <- 1
		key <- 2
	}
	fmin <- b
	c <- fstep*trunc(b/fstep)
	if(c < 0 && c != b) c <- c-fstep
	if((c+fm*fstep) > dmax) fmin <- c
	
	seq(from=fmin, to=fstep*(m-1), by=fstep)
}


#' Thayer and Storer's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @return vector of axis label locations
#' @references
#' Thayer, R. P. and Storer, R. F. (1969) AS 21. Scale Selection for Computer Plots, Journal of the Royal Statistical Society. Series C., pp. 206-208.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
thayer <- function(dmin, dmax, m)
{
	r <- dmax-dmin
	b <- dmin
	kount <- 0
	kod <- 0

	while(kod < 2)
	{
		while(r <= 1)
		{
			kount <- kount+1
			r <- r*10
		}
		while(r > 10)
		{
			kount <- kount-1
			r <- r/10
		}
		b <- b*(10^kount)
		if(b < 0)
			b <- b-1
		ib <- trunc(b)
		b <- ib
		b <- b/(10^kount)
		r <- dmax-b
		a <- r/(m-1)
		kount <- 0
		while(a <= 1)
		{
			kount <- kount+1
			a <- a*10
		}
		while(a > 10)
		{
			kount <- kount-1
			a <- a/10
		}
		ia <- trunc(a)
		if(ia == 6) ia <- 7
		if(ia == 8) ia <- 9

		aa <- 0
		if(a < 1.5) aa <- -0.5
		a <- aa + 1 + ia
		a <- a/(10^kount)
				
		test <- (m-1) * a
		test1 <- (dmax-dmin)/test
		if(test1 > 0.8)
			kod <- 2

		if(kod < 2)
		{
			kount <- 1
			r <- dmax-dmin
			b <- dmin
			kod <- kod + 1
		}
	}

	iab <- trunc(b/a)
	if(iab < 0) iab <- iab-1
	c <- a * iab
	d <- c + (m-1)*a
	if(d >= dmax)
		b <- c

	valmin <- b
	valmax <- b + a*(m-1)	

	seq(from=valmin, to=valmax, by=a)
}

Try the labeling package in your browser

Any scripts or data that you put into this service are public.

labeling documentation built on Aug. 30, 2023, 1:07 a.m.