Nothing
#' Functions for positioning tick labels on axes
#'
#' \tabular{ll}{
#' Package: \tab labeling\cr
#' Type: \tab Package\cr
#' Version: \tab 0.2\cr
#' Date: \tab 2011-04-01\cr
#' License: \tab Unlimited\cr
#' LazyLoad: \tab yes\cr
#' }
#'
#' Implements a number of axis labeling schemes, including those
#' compared in An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes
#' by Talbot, Lin, and Hanrahan, InfoVis 2010.
#'
#' @name labeling-package
#' @aliases labeling
#' @docType package
#' @title Axis labeling
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @references
#' Heckbert, P. S. (1990) Nice numbers for graph labels, Graphics Gems I, Academic Press Professional, Inc.
#' Wilkinson, L. (2005) The Grammar of Graphics, Springer-Verlag New York, Inc.
#' Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes, InfoVis 2010.
#' @keywords dplot
#' @seealso \code{\link{extended}}, \code{\link{wilkinson}}, \code{\link{heckbert}}, \code{\link{rpretty}}, \code{\link{gnuplot}}, \code{\link{matplotlib}}, \code{\link{nelder}}, \code{\link{sparks}}, \code{\link{thayer}}, \code{\link{pretty}}
#' @examples
#' heckbert(8.1, 14.1, 4) # 5 10 15
#' wilkinson(8.1, 14.1, 4) # 8 9 10 11 12 13 14 15
#' extended(8.1, 14.1, 4) # 8 10 12 14
#' # When plotting, extend the plot range to include the labeling
#' # Should probably have a helper function to make this easier
#' data(iris)
#' x <- iris$Sepal.Width
#' y <- iris$Sepal.Length
#' xl <- extended(min(x), max(x), 6)
#' yl <- extended(min(y), max(y), 6)
#' plot(x, y,
#' xlim=c(min(x,xl),max(x,xl)),
#' ylim=c(min(y,yl),max(y,yl)),
#' axes=FALSE, main="Extended labeling")
#' axis(1, at=xl)
#' axis(2, at=yl)
c()
#' Heckbert's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @return vector of axis label locations
#' @references
#' Heckbert, P. S. (1990) Nice numbers for graph labels, Graphics Gems I, Academic Press Professional, Inc.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
heckbert <- function(dmin, dmax, m)
{
range <- .heckbert.nicenum((dmax-dmin), FALSE)
lstep <- .heckbert.nicenum(range/(m-1), TRUE)
lmin <- floor(dmin/lstep)*lstep
lmax <- ceiling(dmax/lstep)*lstep
seq(lmin, lmax, by=lstep)
}
.heckbert.nicenum <- function(x, round)
{
e <- floor(log10(x))
f <- x / (10^e)
if(round)
{
if(f < 1.5) nf <- 1
else if(f < 3) nf <- 2
else if(f < 7) nf <- 5
else nf <- 10
}
else
{
if(f <= 1) nf <- 1
else if(f <= 2) nf <- 2
else if(f <= 5) nf <- 5
else nf <- 10
}
nf * (10^e)
}
#' Wilkinson's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @param Q set of nice numbers
#' @param mincoverage minimum ratio between the the data range and the labeling range, controlling the whitespace around the labeling (default = 0.8)
#' @param mrange range of \code{m}, the number of tick marks, that should be considered in the optimization search
#' @return vector of axis label locations
#' @note Ported from Wilkinson's Java implementation with some changes.
#' Changes: 1) m (the target number of ticks) is hard coded in Wilkinson's implementation as 5.
#' Here we allow it to vary as a parameter. Since m is fixed,
#' Wilkinson only searches over a fixed range 4-13 of possible resulting ticks.
#' We broadened the search range to max(floor(m/2),2) to ceiling(6*m),
#' which is a larger range than Wilkinson considers for 5 and allows us to vary m,
#' including using non-integer values of m.
#' 2) Wilkinson's implementation assumes that the scores are non-negative. But, his revised
#' granularity function can be extremely negative. We tweaked the code to allow negative scores.
#' We found that this produced better labelings.
#' 3) We added 10 to Q. This seemed to be necessary to get steps of size 1.
#' It is possible for this algorithm to find no solution.
#' In Wilkinson's implementation, instead of failing, he returns the non-nice labels spaced evenly from min to max.
#' We want to detect this case, so we return NULL. If this happens, the search range, mrange, needs to be increased.
#' @references
#' Wilkinson, L. (2005) The Grammar of Graphics, Springer-Verlag New York, Inc.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
wilkinson <-function(dmin, dmax, m, Q = c(1,5,2,2.5,3,4,1.5,7,6,8,9), mincoverage = 0.8, mrange=max(floor(m/2),2):ceiling(6*m))
{
best <- NULL
for(k in mrange)
{
result <- .wilkinson.nice.scale(dmin, dmax, k, Q, mincoverage, mrange, m)
if(!is.null(result) && (is.null(best) || result$score > best$score))
{
best <- result
}
}
seq(best$lmin, best$lmax, by=best$lstep)
}
.wilkinson.nice.scale <- function(min, max, k, Q = c(1,5,2,2.5,3,4,1.5,7,6,8,9), mincoverage = 0.8, mrange=c(), m=k)
{
Q <- c(10, Q)
range <- max-min
intervals <- k-1
granularity <- 1 - abs(k-m)/m
delta <- range / intervals
base <- floor(log10(delta))
dbase <- 10^base
best <- NULL
for(i in 1:length(Q))
{
tdelta <- Q[i] * dbase
tmin <- floor(min/tdelta) * tdelta
tmax <- tmin + intervals * tdelta
if(tmin <= min && tmax >= max)
{
roundness <- 1 - ((i-1) - ifelse(tmin <= 0 && tmax >= 0, 1, 0)) / length(Q)
coverage <- (max-min)/(tmax-tmin)
if(coverage > mincoverage)
{
tnice <- granularity + roundness + coverage
## Wilkinson's implementation contains code to favor certain ranges of labels
## e.g. those balanced around or anchored at 0, etc.
## We did not evaluate this type of optimization in the paper, so did not include it.
## Obviously this optimization component could also be added to our function.
#if(tmin == -tmax || tmin == 0 || tmax == 1 || tmax == 100)
# tnice <- tnice + 1
#if(tmin == 0 && tmax == 1 || tmin == 0 && tmax == 100)
# tnice <- tnice + 1
if(is.null(best) || tnice > best$score)
{
best <- list(lmin=tmin,
lmax=tmax,
lstep=tdelta,
score=tnice
)
}
}
}
}
best
}
## The Extended-Wilkinson algorithm described in the paper.
## Our scoring functions, including the approximations for limiting the search
.simplicity <- function(q, Q, j, lmin, lmax, lstep)
{
eps <- .Machine$double.eps * 100
n <- length(Q)
i <- match(q, Q)[1]
v <- ifelse( (lmin %% lstep < eps || lstep - (lmin %% lstep) < eps) && lmin <= 0 && lmax >=0, 1, 0)
1 - (i-1)/(n-1) - j + v
}
.simplicity.max <- function(q, Q, j)
{
n <- length(Q)
i <- match(q, Q)[1]
v <- 1
1 - (i-1)/(n-1) - j + v
}
.coverage <- function(dmin, dmax, lmin, lmax)
{
range <- dmax-dmin
1 - 0.5 * ((dmax-lmax)^2+(dmin-lmin)^2) / ((0.1*range)^2)
}
.coverage.max <- function(dmin, dmax, span)
{
range <- dmax-dmin
if(span > range)
{
half <- (span-range)/2
1 - 0.5 * (half^2 + half^2) / ((0.1 * range)^2)
}
else
{
1
}
}
.density <- function(k, m, dmin, dmax, lmin, lmax)
{
r <- (k-1) / (lmax-lmin)
rt <- (m-1) / (max(lmax,dmax)-min(dmin,lmin))
2 - max( r/rt, rt/r )
}
.density.max <- function(k, m)
{
if(k >= m)
2 - (k-1)/(m-1)
else
1
}
.legibility <- function(lmin, lmax, lstep)
{
1 ## did all the legibility tests in C#, not in R.
}
#' An Extension of Wilkinson's Algorithm for Position Tick Labels on Axes
#'
#' \code{extended} is an enhanced version of Wilkinson's optimization-based axis labeling approach. It is described in detail in our paper. See the references.
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @param Q set of nice numbers
#' @param only.loose if true, the extreme labels will be outside the data range
#' @param w weights applied to the four optimization components (simplicity, coverage, density, and legibility)
#' @return vector of axis label locations
#' @references
#' Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes, InfoVis 2010.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
extended <- function(dmin, dmax, m, Q=c(1,5,2,2.5,4,3), only.loose=FALSE, w=c(0.25,0.2,0.5,0.05))
{
eps <- .Machine$double.eps * 100
if(dmin > dmax) {
temp <- dmin
dmin <- dmax
dmax <- temp
}
if(dmax - dmin < eps) {
#if the range is near the floating point limit,
#let seq generate some equally spaced steps.
return(seq(from=dmin, to=dmax, length.out=m))
}
if((dmax - dmin) > sqrt(.Machine$double.xmax)) {
#if the range is too large
#let seq generate some equally spaced steps.
return(seq(from=dmin, to=dmax, length.out=m))
}
n <- length(Q)
best <- list()
best$score <- -2
j <- 1
while(j < Inf)
{
for(q in Q)
{
sm <- .simplicity.max(q, Q, j)
if((w[1]*sm+w[2]+w[3]+w[4]) < best$score)
{
j <- Inf
break
}
k <- 2
while(k < Inf) # loop over tick counts
{
dm <- .density.max(k, m)
if((w[1]*sm+w[2]+w[3]*dm+w[4]) < best$score)
break
delta <- (dmax-dmin)/(k+1)/j/q
z <- ceiling(log(delta, base=10))
while(z < Inf)
{
step <- j*q*10^z
cm <- .coverage.max(dmin, dmax, step*(k-1))
if((w[1]*sm+w[2]*cm+w[3]*dm+w[4]) < best$score)
break
min_start <- floor(dmax/(step))*j - (k - 1)*j
max_start <- ceiling(dmin/(step))*j
if(min_start > max_start)
{
z <- z+1
next
}
for(start in min_start:max_start)
{
lmin <- start * (step/j)
lmax <- lmin + step*(k-1)
lstep <- step
s <- .simplicity(q, Q, j, lmin, lmax, lstep)
c <- .coverage(dmin, dmax, lmin, lmax)
g <- .density(k, m, dmin, dmax, lmin, lmax)
l <- .legibility(lmin, lmax, lstep)
score <- w[1]*s + w[2]*c + w[3]*g + w[4]*l
if(score > best$score && (!only.loose || (lmin <= dmin && lmax >= dmax)))
{
best <- list(lmin=lmin,
lmax=lmax,
lstep=lstep,
score=score)
}
}
z <- z+1
}
k <- k+1
}
}
j <- j + 1
}
seq(from=best$lmin, to=best$lmax, by=best$lstep)
}
## Quantitative evaluation plots (Figures 2 and 3 in the paper)
#' Generate figures from An Extension of Wilkinson's Algorithm for Position Tick Labels on Axes
#'
#' Generates Figures 2 and 3 from our paper.
#'
#' @param samples number of samples to use (in the paper we used 10000, but that takes awhile to run).
#' @return produces plots as a side effect
#' @references
#' Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes, InfoVis 2010.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
extended.figures <- function(samples = 100)
{
oldpar <- par()
par(ask=TRUE)
a <- runif(samples, -100, 400)
b <- runif(samples, -100, 400)
low <- pmin(a,b)
high <- pmax(a,b)
ticks <- runif(samples, 2, 10)
generate.labelings <- function(labeler, dmin, dmax, ticks, ...)
{
mapply(labeler, dmin, dmax, ticks, SIMPLIFY=FALSE, MoreArgs=list(...))
}
h1 <- generate.labelings(heckbert, low, high, ticks)
w1 <- generate.labelings(wilkinson, low, high, ticks, mincoverage=0.8)
f1 <- generate.labelings(extended, low, high, ticks, only.loose=TRUE)
e1 <- generate.labelings(extended, low, high, ticks)
figure2 <- function(r, names)
{
for(i in 1:length(r))
{
d <- r[[i]]
#plot coverage
cover <- sapply(d, function(x) {max(x)-min(x)})/(high-low)
hist(cover, breaks=seq(from=-0.01,to=1000,by=0.02), xlab="", ylab=names[i], main=ifelse(i==1, "Density", ""), col="darkgray", lab=c(3,3,3), xlim=c(0.5,3.5), ylim=c(0,0.12*samples), axes=FALSE, border=FALSE)
#hist(cover)
axis(side=1, at=c(0,1,2,3,4), xlab="hello", line=-0.1, lwd=0.5)
# plot density
dens <- sapply(d, length) / ticks
hist(dens, breaks=seq(from=-0.01,to=10,by=0.02), xlab="", ylab=names[i], main=ifelse(i==1, "Density", ""), col="darkgray", lab=c(3,3,3), xlim=c(0.5,3.5), ylim=c(0,0.06*samples), axes=FALSE, border=FALSE)
axis(side=1, at=c(0,1,2,3,4), xlab="hello", line=-0.1, lwd=0.5)
}
}
par(mfrow=c(4, 2), mar=c(0.5,1.85,1,0), oma=c(1,0,1,0), mgp=c(0,0.5,-0.3), font.main=1, font.lab=1, cex.lab=1, cex.main=1, tcl=-0.2)
figure2(list(h1,w1, f1, e1), names=c("Heckbert", "Wilkinson", "Extended\n(loose)", "Extended\n(flexible)"))
figure3 <- function(r, names)
{
for(i in 1:length(r))
{
d <- r[[i]]
steps <- sapply(d, function(x) round(median(diff(x)), 2))
steps <- steps / (10^floor(log10(steps)))
tab <- table(steps)
barplot(rev(tab), xlim=c(0,0.4*samples), horiz=TRUE, xlab=ifelse(i==1,"Frequency",""), xaxt='n', yaxt='s', las=1, main=names[i], border=NA, col="gray")
}
}
par(mfrow=c(1,4), mar=c(0.5, 0.75, 2, 0.5), oma=c(0,2,1,1), mgp=c(0,0.75,-0.3), cex.lab=1, cex.main=1)
figure3(list(h1,w1, f1, e1), names=c("Heckbert", "Wilkinson", "Extended\n(loose)", "Extended\n(flexible)"))
par(oldpar)
}
#' Nelder's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @param Q set of nice numbers
#' @return vector of axis label locations
#' @references
#' Nelder, J. A. (1976) AS 96. A Simple Algorithm for Scaling Graphs, Journal of the Royal Statistical Society. Series C., pp. 94-96.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
nelder <- function(dmin, dmax, m, Q = c(1,1.2,1.6,2,2.5,3,4,5,6,8,10))
{
ntick <- floor(m)
tol <- 5e-6
bias <- 1e-4
intervals <- m-1
x <- abs(dmax)
if(x == 0) x <- 1
if(!((dmax-dmin)/x > tol))
{
## special case handling for very small ranges. Not implemented yet.
}
step <- (dmax-dmin)/intervals
s <- step
while(s <= 1)
s <- s*10
while(s > 10)
s <- s/10
x <- s-bias
unit <- 1
for(i in 1:length(Q))
{
if(x < Q[i])
{
unit <- i
break
}
}
step <- step * Q[unit] / s
range <- step*intervals
x <- 0.5 * (1+ (dmin+dmax-range) / step)
j <- floor(x-bias)
valmin <- step * j
if(dmin > 0 && range >= dmax)
valmin <- 0
valmax <- valmin + range
if(!(dmax > 0 || range < -dmin))
{
valmax <- 0
valmin <- -range
}
seq(from=valmin, to=valmax, by=step)
}
#' R's pretty algorithm implemented in R
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @param n number of axis intervals (specify one of \code{m} or \code{n})
#' @param min.n nonnegative integer giving the \emph{minimal} number of intervals. If \code{min.n == 0}, \code{pretty(.)} may return a single value.
#' @param shrink.sml positive numeric by a which a default scale is shrunk in the case when \code{range(x)} is very small (usually 0).
#' @param high.u.bias non-negative numeric, typically \code{> 1}. The interval unit is determined as \code{\{1,2,5,10\}} times \code{b}, a power of 10. Larger \code{high.u.bias} values favor larger units.
#' @param u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and 'optimal': \code{u5.bias = .5 + 1.5*high.u.bias}.
#' @return vector of axis label locations
#' @references
#' Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) \emph{The New S Language}. Wadsworth & Brooks/Cole.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
rpretty <- function(dmin, dmax, m=6, n=floor(m)-1, min.n=n%/%3, shrink.sml = 0.75, high.u.bias=1.5, u5.bias=0.5 + 1.5*high.u.bias)
{
ndiv <- n
h <- high.u.bias
h5 <- u5.bias
dx <- dmax-dmin
if(dx==0 && dmax==0)
{
cell <- 1
i_small <- TRUE
U <- 1
}
else
{
cell <- max(abs(dmin), abs(dmax))
U <- 1 + ifelse(h5 >= 1.5*h+0.5, 1/(1+h), 1.5/(1+h5))
i_small = dx < (cell * U * max(1, ndiv) * 1e-07 * 3)
}
if(i_small)
{
if(cell > 10)
{
cell <- 9+cell/10
}
cell <- cell * shrink.sml
if(min.n > 1) cell <- cell/min.n
}
else
{
cell <- dx
if(ndiv > 1) cell <- cell/ndiv
}
if(cell < 20 * 1e-07)
cell <- 20 * 1e-07
base <- 10^floor(log10(cell))
unit <- base
if((2*base)-cell < h*(cell-unit))
{
unit <- 2*base
if((5*base)-cell < h5*(cell-unit))
{
unit <- 5*base
if((10*base)-cell < h*(cell-unit))
unit <- 10*base
}
}
# track down lattice labelings...
## Maybe used to correct for the epsilon here??
ns <- floor(dmin/unit + 1e-07)
nu <- ceiling(dmax/unit - 1e-07)
## Extend the range out beyond the data. Does this ever happen??
while(ns*unit > dmin+(1e-07*unit)) ns <- ns-1
while(nu*unit < dmax-(1e-07*unit)) nu <- nu+1
## If we don't have quite enough labels, extend the range out to make more (these labels are beyond the data :( )
k <- floor(0.5 + nu-ns)
if(k < min.n)
{
k <- min.n - k
if(ns >=0)
{
nu <- nu + k/2
ns <- ns - k/2 + k%%2
}
else
{
ns <- ns - k/2
nu <- nu + k/2 + k%%2
}
ndiv <- min.n
}
else
{
ndiv <- k
}
graphmin <- ns*unit
graphmax <- nu*unit
seq(from=graphmin, to=graphmax, by=unit)
}
#' Matplotlib's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @return vector of axis label locations
#' @references
#' \url{http://matplotlib.sourceforge.net/}
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
matplotlib <- function(dmin, dmax, m)
{
steps <- c(1,2,5,10)
nbins <- m
trim <- TRUE
vmin <- dmin
vmax <- dmax
params <- .matplotlib.scale.range(vmin, vmax, nbins)
scale <- params[1]
offset <- params[2]
vmin <- vmin-offset
vmax <- vmax-offset
rawStep <- (vmax-vmin)/nbins
scaledRawStep <- rawStep/scale
bestMax <- vmax
bestMin <- vmin
scaledStep <- 1
chosenFactor <- 1
for (step in steps)
{
if (step >= scaledRawStep)
{
scaledStep <- step*scale
chosenFactor <- step
bestMin <- scaledStep * floor(vmin/scaledStep)
bestMax <- bestMin + scaledStep*nbins
if (bestMax >= vmax)
break
}
}
if (trim)
{
extraBins <- floor((bestMax-vmax)/scaledStep)
nbins <- nbins-extraBins
}
graphMin <- bestMin+offset
graphMax <- graphMin+nbins*scaledStep
seq(from=graphMin, to=graphMax, by=scaledStep)
}
.matplotlib.scale.range <- function(min, max, bins)
{
threshold <- 100
dv <- abs(max-min)
maxabsv<-max(abs(min), abs(max))
if (maxabsv == 0 || dv/maxabsv<10^-12)
return(c(1, 0))
meanv <- 0.5*(min+max)
if ((abs(meanv)/dv) < threshold)
offset<- 0
else if (meanv>0)
{
exp<-floor(log10(meanv))
offset = 10.0^exp
} else
{
exp <- floor(log10(-1*meanv))
offset <- -10.0^exp
}
exp <- floor(log10(dv/bins))
scale = 10.0^exp
c(scale, offset)
}
#' gnuplot's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @return vector of axis label locations
#' @references
#' \url{http://www.gnuplot.info/}
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
gnuplot <- function(dmin, dmax, m)
{
ntick <- floor(m)
power <- 10^floor(log10(dmax-dmin))
norm_range <- (dmax-dmin)/power
p <- (ntick-1) / norm_range
if(p > 40)
t <- 0.05
else if(p > 20)
t <- 0.1
else if(p > 10)
t <- 0.2
else if(p > 4)
t <- 0.5
else if(p > 2)
t <- 1
else if(p > 0.5)
t <- 2
else
t <- ceiling(norm_range)
d <- t*power
graphmin <- floor(dmin/d) * d
graphmax <- ceiling(dmax/d) * d
seq(from=graphmin, to=graphmax, by=d)
}
#' Sparks' labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @return vector of axis label locations
#' @references
#' Sparks, D. N. (1971) AS 44. Scatter Diagram Plotting, Journal of the Royal Statistical Society. Series C., pp. 327-331.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
sparks <- function(dmin, dmax, m)
{
fm <- m-1
ratio <- 0
key <- 1
kount <- 0
r <- dmax-dmin
b <- dmin
while(ratio <= 0.8)
{
while(key <= 2)
{
while(r <= 1)
{
kount <- kount + 1
r <- r*10
}
while(r > 10)
{
kount <- kount - 1
r <- r/10
}
b <- b*(10^kount)
if( b < 0 && b != trunc(b)) b <- b-1
b <- trunc(b)/(10^kount)
r <- (dmax-b)/fm
kount <- 0
key <- key+2
}
fstep <- trunc(r)
if(fstep != r) fstep <- fstep+1
if(r < 1.5) fstep <- fstep-0.5
fstep <- fstep/(10^kount)
ratio <- (dmax - dmin)*(fm*fstep)
kount <- 1
key <- 2
}
fmin <- b
c <- fstep*trunc(b/fstep)
if(c < 0 && c != b) c <- c-fstep
if((c+fm*fstep) > dmax) fmin <- c
seq(from=fmin, to=fstep*(m-1), by=fstep)
}
#' Thayer and Storer's labeling algorithm
#'
#' @param dmin minimum of the data range
#' @param dmax maximum of the data range
#' @param m number of axis labels
#' @return vector of axis label locations
#' @references
#' Thayer, R. P. and Storer, R. F. (1969) AS 21. Scale Selection for Computer Plots, Journal of the Royal Statistical Society. Series C., pp. 206-208.
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
#' @export
thayer <- function(dmin, dmax, m)
{
r <- dmax-dmin
b <- dmin
kount <- 0
kod <- 0
while(kod < 2)
{
while(r <= 1)
{
kount <- kount+1
r <- r*10
}
while(r > 10)
{
kount <- kount-1
r <- r/10
}
b <- b*(10^kount)
if(b < 0)
b <- b-1
ib <- trunc(b)
b <- ib
b <- b/(10^kount)
r <- dmax-b
a <- r/(m-1)
kount <- 0
while(a <= 1)
{
kount <- kount+1
a <- a*10
}
while(a > 10)
{
kount <- kount-1
a <- a/10
}
ia <- trunc(a)
if(ia == 6) ia <- 7
if(ia == 8) ia <- 9
aa <- 0
if(a < 1.5) aa <- -0.5
a <- aa + 1 + ia
a <- a/(10^kount)
test <- (m-1) * a
test1 <- (dmax-dmin)/test
if(test1 > 0.8)
kod <- 2
if(kod < 2)
{
kount <- 1
r <- dmax-dmin
b <- dmin
kod <- kod + 1
}
}
iab <- trunc(b/a)
if(iab < 0) iab <- iab-1
c <- a * iab
d <- c + (m-1)*a
if(d >= dmax)
b <- c
valmin <- b
valmax <- b + a*(m-1)
seq(from=valmin, to=valmax, by=a)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.