Nothing
#' Log-log
#'
#' It applies the `Log-log` method.
#'
#' @param data_prepared The data retrieved from `prepare_data()`.
#' @param fit The fit you would like to use for finding the lactate values associated to each one of the lactate thresholds.
#' @param sport The sport at which the incremental test was performed. One of `cycling`, `running`, or `swimming`.
#' @param loglog_restrainer A scalar from 0 to 1 indicating the percentage of the data that you would like to
#' restrain for fitting the Log-Log method. For example, `1` means no restriction (fits using the whole data), and `0.5` means that
#' only the first 50% of the data will be used. Default to `1`.
#' @param plot A boolean to indicate whether to generate a plot from each one of the methods.
#'
#' @return a tibble with the following columns:
#' \item{method}{the method used to estimate the lactate threshold}
#' \item{fitting}{the fitting method used to predict the lactate curve}
#' \item{intensity}{the intensity associated with the estimated lactate threshold}
#' \item{lactate}{the lactate concentration associated with the estimated lactate threshold}
#' \item{heart_rate}{the heart rate associated with the estimated lactate threshold}
#' \item{plot}{the plot produced to display the lactate threshold}
#'
#' @keywords internal
#' @importFrom stats lm
method_loglog <- function(data_prepared, fit, sport, loglog_restrainer = 1, plot) {
data_interpolated <- data_prepared$data_interpolated[[1]] %>%
dplyr::filter(intensity > 0) %>%
dplyr::mutate(
intensity = log(intensity),
lactate = log(lactate)
) %>%
## filter data according to loglog_restrainer
dplyr::slice(seq(loglog_restrainer * dplyr::n()))
linear_fit <- lm(lactate ~ intensity, data = data_interpolated)
segmented_fit <- segmented::segmented(
obj = linear_fit,
npsi = 1, # 1 breakpoint
control = segmented::seg.control(it.max = 1000)
)
method_intensity <- segmented_fit$psi[,2]
method_intensity <- exp(method_intensity)
data_processed <- data_prepared %>%
dplyr::mutate(
method = "Log-log",
fitting = paste({{ fit }}, "(user-defined)", sep = " "),
intensity = method_intensity
) %>%
dplyr::rowwise() %>%
dplyr::mutate(lactate = retrieve_lactate(model = model, intensity_value = intensity)) %>%
dplyr::ungroup() %>%
dplyr::mutate(segmented_object = list(segmented_fit)) %>%
dplyr::mutate(loglog_restrainer = loglog_restrainer) %>%
tidyr::nest(data = -method)
if(plot) {
out <- data_processed %>%
dplyr::rowwise() %>%
dplyr::mutate(
plot = list(plot_lactate(data_processed = data, method = method))
) %>%
dplyr::ungroup() %>%
tidyr::unnest(cols = data)
} else {
out <- data_processed %>%
tidyr::unnest(cols = data)
}
if("heart_rate" %in% colnames(data_prepared$data[[1]])) {
out <- out %>%
dplyr::mutate(
heart_rate = retrieve_heart_rate(raw_data = data_prepared$data[[1]], intensity_value = intensity)
)
}
if(sport == "swimming") {
out <- out %>%
dplyr::mutate(pace = convert_to_pace(speed = intensity))
}
out <- out %>%
dplyr::select(dplyr::any_of(c("method", "fitting", "intensity", "pace", "lactate", "heart_rate", "plot")))
switch (
sport,
"cycling" = out <- out %>% dplyr::mutate(intensity = round(x = intensity, digits = 1)),
"running" = out <- out %>% dplyr::mutate(intensity = round(x = intensity, digits = 2)),
"swimming" = out <- out %>% dplyr::mutate(intensity = round(x = intensity, digits = 3))
)
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.