interface-crimCV: crimCV interface

interface-crimCVR Documentation

crimCV interface

Description

crimCV interface

Usage

## S4 method for signature 'lcMethodCrimCV'
getArgumentDefaults(object)

## S4 method for signature 'lcMethodCrimCV'
getArgumentExclusions(object)

## S4 method for signature 'lcMethodCrimCV'
getCitation(object, ...)

## S4 method for signature 'lcMethodCrimCV'
getName(object)

## S4 method for signature 'lcMethodCrimCV'
getShortName(object)

## S4 method for signature 'lcMethodCrimCV'
prepareData(method, data, verbose, ...)

## S4 method for signature 'lcMethodCrimCV'
fit(method, data, envir, verbose, ...)

## S4 method for signature 'lcModelCrimCV'
predictForCluster(object, newdata, cluster, what = "mu", ...)

## S4 method for signature 'lcModelCrimCV'
postprob(object)

## S3 method for class 'lcModelCrimCV'
logLik(object, ...)

## S3 method for class 'lcModelCrimCV'
coef(object, ...)

## S4 method for signature 'lcModelCrimCV'
converged(object)

Arguments

object

The object.

...

Not used.

method

An object inheriting from lcMethod with all its arguments having been evaluated and finalized.

data

A data.frame representing the transformed training data.

verbose

A R.utils::Verbose object indicating the level of verbosity.

envir

The environment containing variables generated by prepareData() and preFit().

newdata

A data.frame of trajectory data for which to compute trajectory assignments.

cluster

The cluster name (as character) to predict for.

what

The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.

See Also

lcMethodCrimCV crimCV


latrend documentation built on May 29, 2024, 8:51 a.m.