Nothing
##' Extract i.i.d. decomposition (influence function) from model object
##'
##' Extract i.i.d. decomposition (influence function) from model object
##' @export
##' @usage
##'
##' IC(x,...)
##'
##' \method{IC}{default}(x, bread, id=NULL, folds=0, maxsize=(folds>0)*1e6,...)
##'
##' @aliases IC.default var_ic
##' @param x model object
##' @param id (optional) id/cluster variable
##' @param bread (optional) Inverse of derivative of mean score function
##' @param folds (optional) Calculate aggregated iid decomposition (0:=disabled)
##' @param maxsize (optional) Data is split in groups of size up to 'maxsize'
##' (0:=disabled)
##' @param ... additional arguments
##' @examples
##' m <- lvm(y~x+z)
##' distribution(m, ~y+z) <- binomial.lvm("logit")
##' d <- sim(m,1e3)
##' g <- glm(y~x+z,data=d,family=binomial)
##' var_ic(IC(g))
##'
IC <- function(x, ...) UseMethod("IC")
##' @export
influence.estimate <- function(model, ...)
IC(model, ...)
##' @export
IC.default <- function(x, bread, id=NULL,
folds=0, maxsize=(folds>0)*1e6, ...) {
if (any(paste("iid", class(x), sep=".") %in% methods("iid"))) {
## 'iid' method exists for the specific class.
## This is a scaled version of the influence function, hence
## we need to rescale.
cl <- match.call()
cl[[1]] <- substitute(iid)
ii <- eval.parent(cl)
if (!is.null(attr(ii, "bread"))) {
attr(res, "bread") <- attr(res, "bread")*NROW(res)
}
ii <- ii*NROW(ii)
return(ii)
}
if (!any(paste("score", class(x), sep=".") %in% methods("score"))) {
warning("Not available for this class")
return(NULL)
}
if (folds>0 || maxsize>0 ||
(!missing(id) && lava.options()$cluster.index)) {
if (!requireNamespace("mets", quietly=TRUE)) stop("Requires 'mets'")
}
if (folds>0) {
U <- Reduce(
"rbind",
mets::divide.conquer(function(data) score(x, data = data, ...),
id = id,
data = data, size = round(nrow(data) / folds)
)
)
} else {
U <- score(x, indiv=TRUE, ...)
}
pp <- pars(x)
if (!missing(bread) && is.null(bread)) {
bread <- suppressWarnings(vcov(x)*NROW(U))
}
if (missing(bread)) bread <- attributes(U)$bread
if (is.null(bread)) {
bread <- attributes(x)$bread
if (is.null(bread)) bread <- x$bread
if (is.null(bread)) {
if (maxsize>0) {
ff <- function(p) {
colSums(Reduce(
"rbind",
mets::divide.conquer(function(data)
score(x, data = data, p = p, ...),
data = data, size = maxsize
)
))
}
I <- -numDeriv::jacobian(ff, pp, method = lava.options()$Dmethod)
} else {
I <- -numDeriv::jacobian(function(p) {
score(x, p = p, indiv = FALSE, ...)
}, pp, method = lava.options()$Dmethod)
}
bread <- Inverse(I)*NROW(U)
}
}
ic0 <- U%*%bread
if (!missing(id)) {
N <- nrow(ic0)
if (!lava.options()$cluster.index) {
ic0 <- matrix(unlist(by(ic0, id, colSums)),
byrow=TRUE, ncol=ncol(bread))
} else {
ic0 <- mets::cluster.index(id, mat=ic0, return.all=FALSE)
}
ic0 <- ic0*NROW(ic0)/length(id)
attributes(ic0)$N <- N
}
colnames(ic0) <- colnames(U)
return(structure(ic0, bread=bread))
}
##' @export
IC.multigroupfit <- function(x, ...) IC.default(x, combine=TRUE, ...)
##' @export
IC.matrix <- function(x, ...) {
p <- NCOL(x)
n <- NROW(x)
mu <- colMeans(x, na.rm = TRUE)
S <- var(x, use = "pairwise.complete.obs") * (n - 1) / n
ic1 <- t(t(x)-mu)
ic2 <- matrix(ncol = (p + 1) * p / 2, nrow = n)
pos <- 0
nn <- c()
cc <- mu
for (i in seq(p))
for (j in seq(i, p)) {
pos <- pos+1
cc <- c(cc, S[i, j])
ic2[, pos] <- (ic1[, i] * ic1[, j]) - cc[length(cc)]
nn <- c(nn, paste(colnames(x)[c(i, j)],
collapse = lava.options()$symbols[2]
))
}
colnames(ic1) <- colnames(x)
colnames(ic2) <- nn
names(cc) <- c(colnames(ic1), colnames(ic2))
res <- cbind(ic1, ic2)
rownames(res) <- rownames(x)
structure(res,
coef=cc,
mean=mu, var=S)
}
##' @export
IC.numeric <- function(x, ...) {
n <- length(x)
mu <- mean(x)
S <- var(x) * (n - 1) / n
ic1 <- t(t(x) - mu)
structure(cbind(mean=ic1, var=(ic1^2 - S)),
coef=c(mean=mu, var=S), mean=mu, var=S)
}
##' @export
IC.data.frame <- function(x, ...) {
if (!all(apply(x[1, , drop=FALSE], 2,
function(x) inherits(x, c("numeric", "integer")))))
stop("Don't know how to handle data.frames of this type")
IC(as.matrix(x))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.