lavTestScore.mi | R Documentation |
Score test (or "Lagrange multiplier" test) for lavaan models fitted to multiple imputed data sets. Statistics for releasing one or more fixed or constrained parameters in model can be calculated by pooling the gradient and information matrices pooled across imputed data sets in a method proposed by Mansolf, Jorgensen, & Enders (2020)—analogous to the "D1" Wald test proposed by Li, Meng, Raghunathan, & Rubin's (1991)—or by pooling the complete-data score-test statistics across imputed data sets (i.e., "D2"; Li et al., 1991).
lavTestScore.mi(
object,
add = NULL,
release = NULL,
pool.method = c("D2", "D1"),
scale.W = !asymptotic,
omit.imps = c("no.conv", "no.se"),
asymptotic = is.null(add),
univariate = TRUE,
cumulative = FALSE,
epc = FALSE,
standardized = epc,
cov.std = epc,
verbose = FALSE,
warn = TRUE,
information = "expected"
)
object |
An object of class lavaan.mi. |
add |
Either a |
release |
Vector of |
pool.method |
|
scale.W |
|
omit.imps |
|
asymptotic |
|
univariate |
|
cumulative |
|
epc |
|
standardized |
If |
cov.std |
|
verbose |
|
warn |
|
information |
|
A list containing at least one data.frame
:
$test
: The total score test, with columns for the score
test statistic (X2
), its degrees of freedom (df
), its
p value under the \chi^2
distribution (p.value
),
and if asymptotic=FALSE
, the average relative invrease in
variance (ARIV) used to calculate the denominator df is also
returned as a missing-data diagnostic, along with the fraction missing
information (FMI = ARIV / (1 + ARIV)).
$uni
: Optional (if univariate=TRUE
).
Each 1-df score test, equivalent to modification indices. Also
includes EPCs if epc=TRUE
, and RIV and FMI if
asymptotic=FALSE
.
$cumulative
: Optional (if cumulative=TRUE
).
Cumulative score tests, with ARIV and FMI if asymptotic=FALSE
.
$epc
: Optional (if epc=TRUE
). Parameter estimates,
expected parameter changes, and expected parameter values if ALL
the tested constraints were freed.
See lavaan::lavTestScore()
for details.
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Based on source code for lavaan::lavTestScore()
by Yves Rosseel
pool.method = "D1"
method proposed by
Maxwell Mansolf (University of California, Los Angeles;
mamansolf@gmail.com)
Bentler, P. M., & Chou, C.-P. (1992). Some new covariance structure model improvement statistics. Sociological Methods & Research, 21(2), 259–282. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0049124192021002006")}
Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.
Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65–92. Retrieved from https://www.jstor.org/stable/24303994
Mansolf, M., Jorgensen, T. D., & Enders, C. K. (2020). A multiple imputation score test for model modification in structural equation models. Psychological Methods, 25(4), 393–411. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1037/met0000243")}
lavaan::lavTestScore()
data(HS20imps) # import a list of 20 imputed data sets
## specify CFA model from lavaan's ?cfa help page
HS.model <- '
speed =~ c(L1, L1)*x7 + c(L1, L1)*x8 + c(L1, L1)*x9
'
fit <- cfa.mi(HS.model, data = HS20imps, group = "school", std.lv = TRUE)
## Mode 1: Score test for releasing equality constraints
## default test: Li et al.'s (1991) "D2" method
lavTestScore.mi(fit, cumulative = TRUE)
## Li et al.'s (1991) "D1" method,
## adapted for score tests by Mansolf et al. (2020)
lavTestScore.mi(fit, pool.method = "D1")
## Mode 2: Score test for adding currently fixed-to-zero parameters
lavTestScore.mi(fit, add = 'x7 ~~ x8 + x9')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.