lavaan.mi-class | R Documentation |
This class extends the lavaan::lavaanList class, created by fitting a lavaan model to a list of data sets. In this case, the list of data sets are multiple imputations of missing data.
## S4 method for signature 'lavaan.mi'
show(object)
## S4 method for signature 'lavaan.mi'
summary(
object,
header = TRUE,
fit.measures = FALSE,
fm.args = list(standard.test = "default", scaled.test = "default", rmsea.ci.level =
0.9, rmsea.h0.closefit = 0.05, rmsea.h0.notclosefit = 0.08, robust = TRUE,
cat.check.pd = TRUE),
estimates = TRUE,
ci = FALSE,
standardized = FALSE,
std = standardized,
cov.std = TRUE,
rsquare = FALSE,
fmi = FALSE,
asymptotic = FALSE,
scale.W = !asymptotic,
omit.imps = c("no.conv", "no.se"),
remove.unused = TRUE,
modindices = FALSE,
nd = 3L,
...
)
## S4 method for signature 'lavaan.mi'
nobs(object, total = TRUE)
## S4 method for signature 'lavaan.mi'
coef(object, type = "free", labels = TRUE, omit.imps = c("no.conv", "no.se"))
## S4 method for signature 'lavaan.mi'
vcov(
object,
type = c("pooled", "between", "within", "ariv"),
scale.W = TRUE,
omit.imps = c("no.conv", "no.se")
)
## S4 method for signature 'lavaan.mi'
fitted(object, omit.imps = c("no.conv", "no.se"))
## S4 method for signature 'lavaan.mi'
fitted.values(object, omit.imps = c("no.conv", "no.se"))
## S4 method for signature 'lavaan.mi'
fitMeasures(
object,
fit.measures = "all",
baseline.model = NULL,
h1.model = NULL,
fm.args = list(standard.test = "default", scaled.test = "default", rmsea.ci.level =
0.9, rmsea.h0.closefit = 0.05, rmsea.h0.notclosefit = 0.08, robust = 0.08,
cat.check.pd = TRUE),
output = "vector",
omit.imps = c("no.conv", "no.se"),
...
)
## S4 method for signature 'lavaan.mi'
fitmeasures(
object,
fit.measures = "all",
baseline.model = NULL,
h1.model = NULL,
fm.args = list(standard.test = "default", scaled.test = "default", rmsea.ci.level =
0.9, rmsea.h0.closefit = 0.05, rmsea.h0.notclosefit = 0.08, robust = 0.08,
cat.check.pd = TRUE),
output = "vector",
omit.imps = c("no.conv", "no.se"),
...
)
object |
An object of class lavaan.mi |
header , fit.measures , fm.args , estimates , ci , standardized , std , cov.std , rsquare , remove.unused , modindices , nd , output |
See descriptions of |
fmi |
|
asymptotic |
|
scale.W |
|
omit.imps |
|
... |
Additional arguments passed to |
total |
|
type |
The meaning of this argument varies depending on which method it
it used for. Find detailed descriptions in the Value section
under |
labels |
|
baseline.model , h1.model |
See |
coef |
|
vcov |
|
fitted.values |
|
fitted |
alias for |
nobs |
|
fitMeasures |
|
fitmeasures |
alias for |
show |
|
summary |
|
coefList
list
of estimated coefficients in matrix format (one
per imputation) as output by lavInspect(fit, "est")
phiList
list
of model-implied latent-variable covariance
matrices (one per imputation) as output by
lavInspect(fit, "cov.lv")
miList
list
of modification indices output by
lavaan::modindices()
lavListCall
call to lavaan::lavaanList()
used to fit the
model to the list of imputed data sets in @DataList
, stored as a
list
of arguments
convergence
list
of logical
vectors indicating whether,
for each imputed data set, (1) the model converged on a solution, (2)
SEs could be calculated, (3) the (residual) covariance matrix of
latent variables (\Psi
) is non-positive-definite, and (4) the
residual covariance matrix of observed variables (\Theta
) is
non-positive-definite.
version
Named character
vector indicating the lavaan
and
lavaan.mi
version numbers.
DataList
The list
of imputed data sets
SampleStatsList
List of output from
lavInspect(fit, "sampstat")
applied to each fitted model.
ParTableList,vcovList,testList,baselineList
See lavaan::lavaanList
h1List
See lavaan::lavaanList. An additional element is
added to the list
: $PT
is the "saturated" model's parameter
table, returned by lavaan::lav_partable_unrestricted()
.
call,Options,ParTable,pta,Data,Model,meta,timingList,CacheList,optimList,impliedList,loglikList,internalList,funList,external
By default, lavaan.mi()
does not populate the remaining @*List
slots
from the lavaan::lavaanList class. But they can be added to the call using
the store.slots=
argument (passed to lavaan::lavaanList()
via ...).
See the lavaan.mi()
function
for details. Wrapper functions include cfa.mi()
,
sem.mi()
, and growth.mi()
.
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/9780470316696")}
data(HS20imps) # import a list of 20 imputed data sets
## specify CFA model from lavaan's ?cfa help page
HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
'
## fit model to imputed data sets
fit <- cfa.mi(HS.model, data = HS20imps)
## vector of pooled coefficients
coef(fit)
## their pooled asymptotic covariance matrix
vcov(fit)
## which is the weighted sum of within- and between-imputation components
vcov(fit, type = "within")
vcov(fit, type = "between")
## covariance matrix of observed variables,
## as implied by pooled estimates
fitted(fit)
## custom null model for CFI
HS.parallel <- '
visual =~ x1 + 1*x2 + 1*x3
textual =~ x4 + 1*x5 + 1*x6
speed =~ x7 + 1*x8 + 1*x9
'
fit0 <- cfa.mi(HS.parallel, data = HS20imps, orthogonal = TRUE)
fitMeasures(fit, baseline.model = fit0, fit.measures = "default",
output = "text")
## See ?lavaan.mi help page for more examples
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.