View source: R/pool-estimates.R
standardizedSolution.mi | R Documentation |
This function calculates pooled parameter estimates from a lavaan model fitted to multiple imputed data sets, then transforms the pooled estimates and their SEs using the delta method.
standardizedSolution.mi(
object,
return.vcov = FALSE,
omit.imps = c("no.conv", "no.se"),
...
)
object |
An object of class |
return.vcov |
|
omit.imps |
|
... |
Arguments passed to |
A data.frame
containing standardized model parameters, analogous to
lavaan::standardizedSolution()
. Delta-method SEs and CIs rely on
asymptotic theory, so only Wald z tests are available, analogous to
setting parameterEstimates.mi(fit, asymptotic = TRUE)
.
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
parameterEstimates.mi()
for pooling unstandardized parameter estimates,
which can also add standardized point estimates to indicate effect size.
data(HS20imps) # import a list of 20 imputed data sets
## specify CFA model from lavaan's ?cfa help page
HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
'
## fit model to 20 imputed data sets
fit <- cfa.mi(HS.model, data = HS20imps)
standardizedSolution.mi(fit) # default: type = "std.all"
## only standardize latent variables:
standardizedSolution.mi(fit, type = "std.lv",
output = "text") # display like summary()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.