View source: R/pool-estimates.R
| parameterEstimates.mi | R Documentation |
This function pools parameter estimates from a lavaan model fitted to multiple imputed data sets.
parameterEstimates.mi(
object,
se = TRUE,
zstat = se,
pvalue = zstat,
ci = TRUE,
level = 0.95,
fmi = FALSE,
standardized = FALSE,
cov.std = TRUE,
rsquare = FALSE,
asymptotic = FALSE,
scale.W = !asymptotic,
omit.imps = c("no.conv", "no.se"),
remove.system.eq = TRUE,
remove.eq = TRUE,
remove.ineq = TRUE,
remove.def = FALSE,
remove.nonfree = FALSE,
remove.unused = FALSE,
output = "data.frame",
header = FALSE
)
object |
An object of class |
se, zstat, pvalue, ci, level, standardized, cov.std, rsquare, remove.system.eq, remove.eq, remove.ineq, remove.def, remove.nonfree, remove.unused, output, header |
See |
fmi |
Thus, RIV = FMI / (1 |
asymptotic |
|
scale.W |
|
omit.imps |
|
A data.frame, analogous to lavaan::parameterEstimates(), but estimates,
SEs, and tests are pooled across imputations.
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/9780470316696")}
standardizedSolution.mi() to obtain inferential statistics for pooled
standardized parameter estimates.
data(HS20imps) # import a list of 20 imputed data sets
## specify CFA model from lavaan's ?cfa help page
HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
'
## fit model to 20 imputed data sets
fit <- cfa.mi(HS.model, data = HS20imps)
## pooled estimates, with various optional features:
parameterEstimates.mi(fit, asymptotic = TRUE, rsquare = TRUE)
parameterEstimates.mi(fit, ci = FALSE, fmi = TRUE, output = "text")
parameterEstimates.mi(fit, standardized = "std.all", se = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.