Nothing
library(lavaan)
# Simulate data
set.seed(123)
n <- 50 # number of persons
t <- 10 # number of time points
p <- 3 # number of variables per time point
# Create an empty data frame
data <- data.frame(matrix(NA, nrow = n * t, ncol = p * t))
# Fill the data frame with random data
for (i in 1:(p * t)) {
data[, i] <- rnorm(n * t)
}
# Naming the variables for clarity
colnames(data) <- c(paste0("x1_t", 1:t), paste0("x2_t", 1:t), paste0("x3_t", 1:t))
# Define the cross-lagged panel model with latent variables
model <- '
# Define latent variables for each observed variable at each time point
L1_t1 =~ x1_t1
L1_t2 =~ x1_t2
L1_t3 =~ x1_t3
L1_t4 =~ x1_t4
L1_t5 =~ x1_t5
L1_t6 =~ x1_t6
L1_t7 =~ x1_t7
L1_t8 =~ x1_t8
L1_t9 =~ x1_t9
L1_t10 =~ x1_t10
L2_t1 =~ x2_t1
L2_t2 =~ x2_t2
L2_t3 =~ x2_t3
L2_t4 =~ x2_t4
L2_t5 =~ x2_t5
L2_t6 =~ x2_t6
L2_t7 =~ x2_t7
L2_t8 =~ x2_t8
L2_t9 =~ x2_t9
L2_t10 =~ x2_t10
L3_t1 =~ x3_t1
L3_t2 =~ x3_t2
L3_t3 =~ x3_t3
L3_t4 =~ x3_t4
L3_t5 =~ x3_t5
L3_t6 =~ x3_t6
L3_t7 =~ x3_t7
L3_t8 =~ x3_t8
L3_t9 =~ x3_t9
L3_t10 =~ x3_t10
# Autoregressive paths
L1_t2 ~ L1_t1
L1_t3 ~ L1_t2
L1_t4 ~ L1_t3
L1_t5 ~ L1_t4
L1_t6 ~ L1_t5
L1_t7 ~ L1_t6
L1_t8 ~ L1_t7
L1_t9 ~ L1_t8
L1_t10 ~ L1_t9
L2_t2 ~ L2_t1
L2_t3 ~ L2_t2
L2_t4 ~ L2_t3
L2_t5 ~ L2_t4
L2_t6 ~ L2_t5
L2_t7 ~ L2_t6
L2_t8 ~ L2_t7
L2_t9 ~ L2_t8
L2_t10 ~ L2_t9
L3_t2 ~ L3_t1
L3_t3 ~ L3_t2
L3_t4 ~ L3_t3
L3_t5 ~ L3_t4
L3_t6 ~ L3_t5
L3_t7 ~ L3_t6
L3_t8 ~ L3_t7
L3_t9 ~ L3_t8
L3_t10 ~ L3_t9
# Cross-lagged paths
L1_t2 ~ L2_t1 + L3_t1
L2_t2 ~ L1_t1 + L3_t1
L3_t2 ~ L1_t1 + L2_t1
L1_t3 ~ L2_t2 + L3_t2
L2_t3 ~ L1_t2 + L3_t2
L3_t3 ~ L1_t2 + L2_t2
L1_t4 ~ L2_t3 + L3_t3
L2_t4 ~ L1_t3 + L3_t3
L3_t4 ~ L1_t3 + L2_t3
L1_t5 ~ L2_t4 + L3_t4
L2_t5 ~ L1_t4 + L3_t4
L3_t5 ~ L1_t4 + L2_t4
L1_t6 ~ L2_t5 + L3_t5
L2_t6 ~ L1_t5 + L3_t5
L3_t6 ~ L1_t5 + L2_t5
L1_t7 ~ L2_t6 + L3_t6
L2_t7 ~ L1_t6 + L3_t6
L3_t7 ~ L1_t6 + L2_t6
L1_t8 ~ L2_t7 + L3_t7
L2_t8 ~ L1_t7 + L3_t7
L3_t8 ~ L1_t7 + L2_t7
L1_t9 ~ L2_t8 + L3_t8
L2_t9 ~ L1_t8 + L3_t8
L3_t9 ~ L1_t8 + L2_t8
L1_t10 ~ L2_t9 + L3_t9
L2_t10 ~ L1_t9 + L3_t9
L3_t10 ~ L1_t9 + L2_t9
'
# Fit the model
fit <- sem(model, data = data)
lavaangui(fit)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.