| KDTree | R Documentation |
Wrapper R6 Class of RANN::nn2 function that can be used for LESSRegressor and LESSClassifier
R6 Class of KDTree
new()Creates a new instance of R6 Class of KDTree
KDTree$new(X = NULL)
XAn M x d data.frame or matrix, where each of the M rows is a point or a (column) vector (where d=1).
data(abalone) kdt <- KDTree$new(abalone[1:100,])
query()Finds the p number of near neighbours for each point in an input/output dataset. The advantage of the kd-tree is that it runs in O(M log M) time.
KDTree$query(query_X = private$X, k = 1)
query_XA set of N x d points that will be queried against X. d, the number of columns, must be the same as X.
If missing, defaults to X.
kThe maximum number of nearest neighbours to compute (deafults to 1).
A list of length 2 with elements:
nn.idx | A N x k integer matrix returning the near neighbour indices. |
nn.dists | A N x k matrix returning the near neighbour Euclidean distances |
res <- kdt$query(abalone[1:3,], k=2) print(res)
clone()The objects of this class are cloneable with this method.
KDTree$clone(deep = FALSE)
deepWhether to make a deep clone.
RANN::nn2()
## ------------------------------------------------ ## Method `KDTree$new` ## ------------------------------------------------ data(abalone) kdt <- KDTree$new(abalone[1:100,]) ## ------------------------------------------------ ## Method `KDTree$query` ## ------------------------------------------------ res <- kdt$query(abalone[1:3,], k=2) print(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.