KNeighborsClassifier | R Documentation |
Wrapper R6 Class of caret::knnreg function that can be used for LESSRegressor and LESSClassifier
R6 Class of KNeighborsClassifier
less::BaseEstimator
-> less::SklearnEstimator
-> KNeighborsClassifier
new()
Creates a new instance of R6 Class of KNeighborsClassifier
KNeighborsClassifier$new(k = 5)
k
Number of neighbors considered (defaults to 5).
knc <- KNeighborsClassifier$new() knc <- KNeighborsClassifier$new(k = 5)
fit()
Fit the k-nearest neighbors regressor from the training set (X, y).
KNeighborsClassifier$fit(X, y)
X
2D matrix or dataframe that includes predictors
y
1D vector or (n,1) dimensional matrix/dataframe that includes labels
Fitted R6 Class of KNeighborsClassifier
data(iris) split_list <- train_test_split(iris, test_size = 0.3) X_train <- split_list[[1]] X_test <- split_list[[2]] y_train <- split_list[[3]] y_test <- split_list[[4]] knc <- KNeighborsClassifier$new() knc$fit(X_train, y_train)
predict()
Predict regression value for X0.
KNeighborsClassifier$predict(X0)
X0
2D matrix or dataframe that includes predictors
Factor of the predict classes.
knc <- KNeighborsClassifier$new() knc$fit(X_train, y_train) preds <- knc$predict(X_test) knc <- KNeighborsClassifier$new() preds <- knc$fit(X_train, y_train)$predict(X_test) preds <- KNeighborsClassifier$new()$fit(X_train, y_train)$predict(X_test) print(caret::confusionMatrix(data=factor(preds), reference = factor(y_test)))
get_estimator_type()
Auxiliary function returning the estimator type e.g 'regressor', 'classifier'
KNeighborsClassifier$get_estimator_type()
knc$get_estimator_type()
clone()
The objects of this class are cloneable with this method.
KNeighborsClassifier$clone(deep = FALSE)
deep
Whether to make a deep clone.
caret::knn3()
## ------------------------------------------------ ## Method `KNeighborsClassifier$new` ## ------------------------------------------------ knc <- KNeighborsClassifier$new() knc <- KNeighborsClassifier$new(k = 5) ## ------------------------------------------------ ## Method `KNeighborsClassifier$fit` ## ------------------------------------------------ data(iris) split_list <- train_test_split(iris, test_size = 0.3) X_train <- split_list[[1]] X_test <- split_list[[2]] y_train <- split_list[[3]] y_test <- split_list[[4]] knc <- KNeighborsClassifier$new() knc$fit(X_train, y_train) ## ------------------------------------------------ ## Method `KNeighborsClassifier$predict` ## ------------------------------------------------ knc <- KNeighborsClassifier$new() knc$fit(X_train, y_train) preds <- knc$predict(X_test) knc <- KNeighborsClassifier$new() preds <- knc$fit(X_train, y_train)$predict(X_test) preds <- KNeighborsClassifier$new()$fit(X_train, y_train)$predict(X_test) print(caret::confusionMatrix(data=factor(preds), reference = factor(y_test))) ## ------------------------------------------------ ## Method `KNeighborsClassifier$get_estimator_type` ## ------------------------------------------------ knc$get_estimator_type()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.