| KNeighborsRegressor | R Documentation |
Wrapper R6 Class of caret::knnreg function that can be used for LESSRegressor and LESSClassifier
R6 Class of KNeighborsRegressor
less::BaseEstimator -> less::SklearnEstimator -> KNeighborsRegressor
new()Creates a new instance of R6 Class of KNeighborsRegressor
KNeighborsRegressor$new(k = 5)
kNumber of neighbors considered (defaults to 5).
knr <- KNeighborsRegressor$new() knr <- KNeighborsRegressor$new(k = 5)
fit()Fit the k-nearest neighbors regressor from the training set (X, y).
KNeighborsRegressor$fit(X, y)
X2D matrix or dataframe that includes predictors
y1D vector or (n,1) dimensional matrix/dataframe that includes response variables
Fitted R6 Class of KNeighborsRegressor
data(abalone) split_list <- train_test_split(abalone[1:100,], test_size = 0.3) X_train <- split_list[[1]] X_test <- split_list[[2]] y_train <- split_list[[3]] y_test <- split_list[[4]] knr <- KNeighborsRegressor$new() knr$fit(X_train, y_train)
predict()Predict regression value for X0.
KNeighborsRegressor$predict(X0)
X02D matrix or dataframe that includes predictors
The predict values.
knr <- KNeighborsRegressor$new()
knr$fit(X_train, y_train)
preds <- knr$predict(X_test)
knr <- KNeighborsRegressor$new()
preds <- knr$fit(X_train, y_train)$predict(X_test)
preds <- KNeighborsRegressor$new()$fit(X_train, y_train)$predict(X_test)
print(head(matrix(c(y_test, preds), ncol = 2, dimnames = (list(NULL, c("True", "Prediction"))))))
get_estimator_type()Auxiliary function returning the estimator type e.g 'regressor', 'classifier'
KNeighborsRegressor$get_estimator_type()
knr$get_estimator_type()
clone()The objects of this class are cloneable with this method.
KNeighborsRegressor$clone(deep = FALSE)
deepWhether to make a deep clone.
caret::knnreg()
## ------------------------------------------------
## Method `KNeighborsRegressor$new`
## ------------------------------------------------
knr <- KNeighborsRegressor$new()
knr <- KNeighborsRegressor$new(k = 5)
## ------------------------------------------------
## Method `KNeighborsRegressor$fit`
## ------------------------------------------------
data(abalone)
split_list <- train_test_split(abalone[1:100,], test_size = 0.3)
X_train <- split_list[[1]]
X_test <- split_list[[2]]
y_train <- split_list[[3]]
y_test <- split_list[[4]]
knr <- KNeighborsRegressor$new()
knr$fit(X_train, y_train)
## ------------------------------------------------
## Method `KNeighborsRegressor$predict`
## ------------------------------------------------
knr <- KNeighborsRegressor$new()
knr$fit(X_train, y_train)
preds <- knr$predict(X_test)
knr <- KNeighborsRegressor$new()
preds <- knr$fit(X_train, y_train)$predict(X_test)
preds <- KNeighborsRegressor$new()$fit(X_train, y_train)$predict(X_test)
print(head(matrix(c(y_test, preds), ncol = 2, dimnames = (list(NULL, c("True", "Prediction"))))))
## ------------------------------------------------
## Method `KNeighborsRegressor$get_estimator_type`
## ------------------------------------------------
knr$get_estimator_type()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.