Nothing
#' .getScores
#'
#' returns the scores of a model of class Rcpp_SEMCpp. This is the internal model
#' representation. Models of this class
#' can be generated with the lessSEM:::.SEMFromLavaan-function.
#'
#' @param SEM model of class Rcpp_SEMCpp
#' @param raw controls if the internal transformations of lessSEM should be used.
#' lessSEM will use an exponential function for all variances to
#' avoid negative variances. When set to TRUE, the scores will be given for the
#' internal parameter representation. Set to FALSE to get the usual
#' scores
#' @returns matrix with derivatives of the -2log-Likelihood for each person and parameter (rows are persons, columns are parameters)
#' @keywords internal
.getScores <- function(SEM, raw){
scores <- SEM$getScores(raw)
colnames(scores) <- SEM$getParameterLabels()
rownames(scores) <- paste0("person_",1:nrow(scores))
return(scores)
}
#' .getGradients
#'
#' returns the gradients of a model of class Rcpp_SEMCpp. This is the internal model
#' representation. Models of this class
#' can be generated with the lessSEM:::.SEMFromLavaan-function.
#'
#' @param SEM model of class Rcpp_SEMCpp
#' @param raw controls if the internal transformations of lessSEM should be used.
#' lessSEM will use an exponential function for all variances to
#' avoid negative variances. When set to TRUE, the gradients will be given for the
#' internal parameter representation. Set to FALSE to get the usual
#' gradients
#' @returns vector with derivatives of the -2log-Likelihood with respect to each parameter
#' @keywords internal
.getGradients <- function(SEM, raw){
gradients <- as.vector(SEM$getGradients(raw))
names(gradients) <- names(.getParameters(SEM = SEM, raw = TRUE, transformations = FALSE))
return(gradients)
}
#### Hessian ####
#' .getHessian
#'
#' returns the Hessian of a model of class Rcpp_SEMCpp. This is the internal
#' model representation. Models of this class
#' can be generated with the lessSEM:::.SEMFromLavaan-function. The function is adapted
#' from lavaan::lav_model_hessian.
#'
#' @param SEM model of class Rcpp_SEMCpp
#' @param raw controls if the internal transformations of lessSEM should be used.
#' lessSEM will use an exponential function for all variances to
#' avoid negative variances. When set to TRUE, the gradients will be given for
#' the internal parameter representation. Set to FALSE to get the usual
#' gradients
#' @param eps eps controls the step size of the numerical approximation.
#' @returns matrix with second derivatives of the -2log-Likelihood with respect
#' to each parameter
#' @keywords internal
.getHessian <- function (SEM, raw, eps = 1e-7){
SEM <- .fit(SEM = SEM)
parameters <- .getParameters(SEM = SEM, raw = raw)
hessian <- SEM$getHessian(names(parameters), parameters, raw, eps)
rownames(hessian) <- names(parameters)
colnames(hessian) <- names(parameters)
return(hessian)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.