Description Usage Arguments Value Author(s) References See Also Examples
Performs kernel local fisher discriminant analysis on the given data,
which is the non-linear version of LFDA (see details lfda
).
1 2 |
k |
n x n kernel matrix. Result of the |
y |
n dimensional vector of class labels |
r |
dimensionality of reduced space (default: d) |
metric |
type of metric in the embedding space (default: 'weighted') 'weighted' — weighted eigenvectors 'orthonormalized' — orthonormalized 'plain' — raw eigenvectors |
knn |
parameter used in local scaling method (default: 6) |
reg |
regularization parameter (default: 0.001) |
list of the LFDA results:
T |
d x r transformation matrix (Z = t(T) * X) |
Z |
r x n matrix of dimensionality reduced samples |
Yuan Tang
Sugiyama, M (2007). - contain implementation Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, vol.8, 1027–1061.
Sugiyama, M (2006). Local Fisher discriminant analysis for supervised dimensionality reduction. In W. W. Cohen and A. Moore (Eds.), Proceedings of 23rd International Conference on Machine Learning (ICML2006), 905–912.
Original Matlab Implementation: http://www.ms.k.u-tokyo.ac.jp/software.html#LFDA
See lfda
for the linear version.
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.