View source: R/lgb.interprete.R
lgb.interprete | R Documentation |
Computes feature contribution components of rawscore prediction.
lgb.interprete(model, data, idxset, num_iteration = NULL)
model |
object of class |
data |
a matrix object or a dgCMatrix object. |
idxset |
an integer vector of indices of rows needed. |
num_iteration |
number of iteration want to predict with, NULL or <= 0 means use best iteration. |
For regression, binary classification and lambdarank model, a list
of data.table
with the following columns:
Feature
: Feature names in the model.
Contribution
: The total contribution of this feature's splits.
For multiclass classification, a list
of data.table
with the Feature column and
Contribution columns to each class.
Logit <- function(x) log(x / (1.0 - x))
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
set_field(
dataset = dtrain
, field_name = "init_score"
, data = rep(Logit(mean(train$label)), length(train$label))
)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
params <- list(
objective = "binary"
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0
, num_threads = 2L
)
model <- lgb.train(
params = params
, data = dtrain
, nrounds = 3L
)
tree_interpretation <- lgb.interprete(model, test$data, 1L:5L)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.