Description Usage Arguments Details Value Author(s) References See Also Examples
Augmenting method for the "lineqAGP"
S3 class.
1 2 | ## S3 method for class 'lineqAGP'
augment(x, ...)
|
x |
an object with class |
... |
further arguments passed to or from other methods. |
Some paramaters of the finite-dimensional GP with linear inequality constraints are computed. Here, ξ is a centred Gaussian vector with covariance Γ, s.t. Φ ξ = y (interpolation constraints) and lb ≤ Λ ξ ≤ ub (inequality constraints).
An expanded "lineqGP"
object with the following additional elements.
Phi |
a matrix corresponding to the hat basis functions. The basis functions are indexed by rows. |
Gamma |
the covariance matrix of the Gassian vector ξ. |
(Lambda,lb,ub) |
the linear system of inequalities. |
... |
further parameters passed to or from other methods. |
A. F. Lopez-Lopera.
Lopez-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2017), "Finite-dimensional Gaussian approximation with linear inequality constraints". ArXiv e-prints [link]
create.lineqAGP
, predict.lineqAGP
,
simulate.lineqAGP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # creating the model
d <- 2
fun1 <- function(x) return(4*(x-0.5)^2)
fun2 <- function(x) return(2*x)
targetFun <- function(x) return(fun1(x[, 1]) + fun1(x[, 2]))
xgrid <- expand.grid(seq(0, 1, 0.01), seq(0, 1, 0.01))
ygrid <- targetFun(xgrid)
xdesign <- rbind(c(0.5, 0), c(0.5, 0.5), c(0.5, 1), c(0, 0.5), c(1, 0.5))
ydesign <- targetFun(xdesign)
model <- create(class = "lineqAGP", x = xdesign, y = ydesign,
constrType = c("convexity", "monotonicity"))
# updating and expanding the model
model$localParam$m <- rep(50, d)
model$kernParam[[1]]$par <- c(1, 0.2)
model$kernParam[[2]]$par <- c(1, 0.2)
model$nugget <- 1e-9
model$varnoise <- 1e-5
model <- augment(model)
str(model)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.