Description Usage Arguments Details Value Examples
This routine performs non-parametric least squares regression
using SVMs. The tested estimators are therefore estimating
the conditional means of Y given X.
svmRegression
is a simple alias of lsSVM
.
1 2 3 |
x |
either a formula or the features |
y |
either the data or the labels corresponding to the features |
... |
configuration parameters, see Configuration. Can be |
clipping |
absolute value where the estimated labels will be clipped. -1 (the default) leads to an adaptive clipping value, whereas 0 disables clipping. |
do.select |
if |
This is the default for svm
if the labels are not a factor.
an object of type svm
. Depending on the usage this object
has also $train_errors
, $select_errors
, and $last_result
properties.
1 2 3 4 5 6 7 8 9 |
sh: 1: /bin/cat: Permission denied
sh: 1: grep: Permission denied
sh: 1: /bin/cat: Permission denied
sh: 1: grep: Permission denied
Welcome to SVM train (dim=4 size=800 decision_functions=0 cookie=1)
liquidSVM-train -r 1 -s -1 -S 1 -P 0 -f 3 5 -g 10 0.200000 5.000000 -l 10 0.001000 0.010000 -a 0 -L 2 -d 1 -T 0 -GPU 0
Assigning samples to cells for task 0.
Considering cell 1 out of 1 for task 1 out of 1.
Fold 1: training set size 640, validation set size 160.
Fold 2: training set size 640, validation set size 160.
Fold 3: training set size 640, validation set size 160.
Fold 4: training set size 640, validation set size 160.
Fold 5: training set size 640, validation set size 160.
tpt: 0.01 tbt: 0.15 tnt: 0.01 vpt: 0.00 vbt: 0.07 it: 0.001 tt: 0.061 vt: 0.035 ii: 500 ti: 57617 tu: 115234 vi: 114401 h2D: 0.079
Welcome to SVM select (dim=4 size=800 decision_functions=0 cookie=1)
liquidSVM-select -R 1 -d 1
Considering cell 1 out of 1 for task 1 out of 1.
Fold 1: best validation error 0.1219.
Fold 2: best validation error 0.1303.
Fold 3: best validation error 0.1485.
Fold 4: best validation error 0.0956.
Fold 5: best validation error 0.1422.
Warning: The best gamma was 0 times at the lower boundary and 5 times at the
upper boundary of your gamma grid. 5 times a gamma value was selected.
Warning message:
In selectSVMs(model) :
Solution may not be optimal: try training again using max_gamma=25
Welcome to SVM test (using SVM with dim=4 trained on size=800 decision_functions=5 cookie=1)
liquidSVM-test -L 2 -v 1 1 -d 1 -T 0 -GPU 0
Task 1: Test error 0.1270.
val_error
0.1270483
[1] 0.1270483
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.