Description Usage Arguments Details Value Author(s) References See Also Examples
An automatic CV and fitting wrapper for Liso.
1 |
x |
Design matrix (without intercept). |
y |
Response value. |
adaptive |
If TRUE, conduct an adaptive liso type procedure. Otherwise just do the raw liso fits. |
lambda |
Value of the penalty parameter lambda. Default is NULL, specifying repeated cross-validations. Can be a vector, in which case each term gives the lambda for each step of the adaptive procedure. |
monotone |
Monotonicity pattern. Default is NULL, specifying a sign-discovery procedure, or non-monotone fitting if |
control |
Optional additional arguments to be passed to the cross-validation or backfitting, as a two field list. Each of |
This function is a convenient wrapper for the liso functions that automates the process of CV and fitting or adaptive fitting.
A lisofit
object is returned to represent the fit, which inherits from class multistep
. plot
, summary
, print
, `*`
and other methods exist.
Zhou Fang
Zhou Fang and Nicolai Meinshausen (2009), Liso for High Dimensional Additive Isotonic Regression, available at http://blah.com
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Use the method on a simulated data set
set.seed(79)
n <- 100; p <- 50
## Simulate design matrix and response
x <- matrix(runif(n * p, min = -2.5, max = 2.5), nrow = n, ncol = p)
y <- scale(3 * (x[,1]> 0), scale=FALSE) + x[,2]^3 + rnorm(n)
## Do a single prespecified fit
fit1 = liso(x,y, FALSE, 4, TRUE)
plot(fit1, dims=1:2)
## Do a cross-validated fit constrained to be monotone increasing
fit2 = liso(x,y, FALSE, monotone=TRUE)
plot(fit2, dims=1:2)
## Do an adaptive fit constrained to be monotone increasing, with an increased tolerance for convergence in the crossvalidation
fit3 = liso(x,y, TRUE, monotone=TRUE, control=list(cv=list(tol.target=1e-2), liso=NULL))
plot(fit3, dims=1:2)
## Do a sign discovery adaptive fit, with 5 CV folds instead of 10
fit4 = liso(x,y, TRUE, control=list(cv=list(K=5), liso=NULL))
plot(fit4, dims=1:2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.