Nothing
library(lmForc)
#===============================================================================
# Stylized Testing Data
#===============================================================================
# Estimation Data.
date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30", "2012-09-30", "2012-12-31",
"2013-03-31", "2013-06-30", "2013-09-30", "2013-12-31"))
y <- c(1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0)
x1 <- c(8.22, 3.86, 4.27, 3.37, 5.88, 3.34, 2.92, 1.80, 3.30, 7.17, 3.22, 3.86, 4.27, 3.37, 5.88, 3.34)
x2 <- c(4.03, 2.46, 2.04, 2.44, 6.09, 2.91, 1.68, 2.91, 3.87, 1.63, 4.03, 2.46, 2.04, 2.44, 6.09, 2.91)
dataLogit <- data.frame(date, y, x1, x2)
# Parameter Forecasts.
x1_forecastLogit <- Forecast(
origin = as.Date(c("2013-12-31", "2013-12-31", "2013-12-31", "2013-12-31")),
future = as.Date(c("2014-03-31", "2014-06-30", "2014-09-30", "2014-12-31")),
forecast = c(2.11, 6.11, 6.75, 4.30),
realized = NULL,
h_ahead = NULL
)
x2_forecastLogit <- Forecast(
origin = as.Date(c("2013-12-31", "2013-12-31", "2013-12-31", "2013-12-31")),
future = as.Date(c("2014-03-31", "2014-06-30", "2014-09-30", "2014-12-31")),
forecast = c(1.98, 7.44, 7.86, 5.98),
realized = NULL,
h_ahead = NULL
)
#===============================================================================
# Intended Evaluation
#===============================================================================
# Function inputs.
glm_call <- glm(y ~ x1 + x2, data = dataLogit, family = binomial)
# Test output forecast length.
output_length <- length(x1_forecastLogit@forecast)
time_vec <- dataLogit$date
# Test forecasts.
train_glm <- glm(y ~ x1 + x2, dataLogit, family = binomial)
pos2 <- 1 / (1 + exp(-1 * (train_glm$coefficients[[1]] +
train_glm$coefficients[[2]] * x1_forecastLogit@forecast[2] +
train_glm$coefficients[[3]] * x2_forecastLogit@forecast[2])))
pos4 <- 1 / (1 + exp(-1 * (train_glm$coefficients[[1]] +
train_glm$coefficients[[2]] * x1_forecastLogit@forecast[4] +
train_glm$coefficients[[3]] * x2_forecastLogit@forecast[4])))
#===============================================================================
# True Evaluation
#===============================================================================
forc <- conditional_forc_general(
model_function = function(data) {glm(y ~ x1 + x2, data = data, family = binomial)},
prediction_function = function(model_function, data) {
names(data) <- c("x1", "x2")
as.vector(predict(model_function, data, type = "response"))
},
data = dataLogit,
time_vec = dataLogit$date,
x1_forecastLogit, x2_forecastLogit
)
#===============================================================================
# Testing
#===============================================================================
test_that("Origin and future output are of the correct class.", {
expect_equal(class(time_vec), class(origin(forc)))
expect_equal(class(time_vec), class(future(forc)))
})
test_that("Output values are correct.", {
expect_equal(origin(forc), origin(x1_forecastLogit))
expect_equal(future(forc), future(x1_forecastLogit))
expect_equal(forc(forc)[2], pos2)
expect_equal(forc(forc)[4], pos4)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.