Nothing
#' Plots a Cumulative Logistic PCA model
#'
#' @param x an object of type clpca
#' @param dims which dimensions to visualize
#' @param ycol colour for representation of response variables
#' @param xcol colour for representation of predictor variables
#' @param ocol colour for representation of row objects
#' @param markersize size of points
#' @param labelsize size of labels
#' @param \dots additional arguments to be passed.
#'
#' @return Plot of the results obtained from clpca
#' @examples
#' \dontrun{
#' data(dataExample_clpca)
#' Y<-as.matrix(dataExample_clpca[,5:8])
#' X<-as.matrix(dataExample_clpca[,1:4])
#' out = clpca(Y, X)
#' plot(out)
#' }
#'
#' @import ggplot2
#' @export
plot.clpca <- function(x, dims = c(1,2),
ycol = "darkgreen", xcol = "darkblue", ocol = "grey",
markersize = 2.5, labelsize = 3, ...)
{
object<-x
######################################################
# retrieve information from object
######################################################
Y = object$Y
U = as.data.frame(object$U[ , dims])
N = nrow(U)
colnames(U) = c("dim1", "dim2")
V = object$V[ , dims]
VV = as.data.frame(V)
R = nrow(V)
colnames(VV) = c("dim1", "dim2")
rownames(VV) = object$ynames
######################################################
# retrieve information for response variables variable axes
######################################################
MCy <- data.frame(labs=character(),
vary = integer(),
dim1 = double(),
dim2 = double(), stringsAsFactors=FALSE)
ll = 0
for(r in 1:R){
m = object$m[[r]]
l.m = length(m)
markers = matrix(m, ncol = 1)
v = matrix(V[r, ], nrow = 2, ncol = 1)
markerscoord = markers %*% t(v %*% solve(t(v) %*% v))
markerlabs = names(m)
MCy[(ll + 1): (ll + l.m), 1] = markerlabs
MCy[(ll + 1): (ll + l.m), 2] = r
MCy[(ll + 1): (ll + l.m), 3:4] = markerscoord
ll = ll + l.m
}
######################################################
# retrieve information for predictor variables variable axes
######################################################
X = object$X
isx = !is.null(X)
if(isx){
P = ncol(X)
B = object$B[ , dims]
Xo = object$Xoriginal
dfxs = make.dfs.for.X(Xo, P, B, object$xnames, object$mx, object$sdx)
MCx1 = dfxs$MCx1
MCx2 = dfxs$MCx2
MCx3 = dfxs$MCx3
dichotomous = dfxs$dichotomous
} #isx
######################################################
# plotting - objects
######################################################
plt = ggplot() +
geom_point(data = U, aes(x = .data$dim1, y = .data$dim2), colour = ocol) +
xlab(paste("Dimension", dims[1])) +
ylab(paste("Dimension", dims[2]))
margins <- c("l" = ggplot_build(plt)$layout$panel_scales_x[[1]]$range$range[1] - .1,
"r" = ggplot_build(plt)$layout$panel_scales_x[[1]]$range$range[2] + .1,
"b" = ggplot_build(plt)$layout$panel_scales_y[[1]]$range$range[1] - .1,
"t" = ggplot_build(plt)$layout$panel_scales_y[[1]]$range$range[2] + .1)
######################################################
# variable axes with ticks and markers for predictors
######################################################
if(isx){
plt = plt +
geom_abline(intercept = 0, slope = B[!dichotomous, 2]/B[!dichotomous,1], colour = xcol, linetype = 3) +
geom_line(data = MCx1, aes(x = .data$dim1, y = .data$dim2, group = .data$varx), col = xcol, linewidth = 1) +
geom_label(data = MCx2, aes(x = .data$dim1, y = .data$dim2, label = .data$labs),
fill = xcol, fontface = "bold", color = "white", size = markersize) +
geom_point(data = MCx3, aes(x = .data$dim1, y = .data$dim2), col = xcol, size = 4) +
geom_text_repel(data = MCx3[-1, ], aes(x = .data$dim1, y = .data$dim2, label = labs,
family = 'mono', fontface = 'bold'), size = 3)
}
######################################################
# variable axes with ticks and markers for responses
######################################################
plt = plt +
geom_abline(intercept = 0, slope = V[,2]/V[,1], colour = ycol) +
geom_label(data = MCy, aes(x = .data$dim1, y = .data$dim2, label = labs),
fill = ycol, fontface = "bold", color = "white", size = markersize)
######################################################
# variable labels
######################################################
margins <- c("l" = ggplot_build(plt)$layout$panel_scales_x[[1]]$range$range[1],
"r" = ggplot_build(plt)$layout$panel_scales_x[[1]]$range$range[2],
"b" = ggplot_build(plt)$layout$panel_scales_y[[1]]$range$range[1],
"t" = ggplot_build(plt)$layout$panel_scales_y[[1]]$range$range[2])
if(isx){
BV = rbind(B[!dichotomous, ], V)
PP = nrow(B[!dichotomous, ])
CC = nrow(V)
names = c(object$xnames[!dichotomous], object$ynames)
}
else{
BV = V
PP = 0
CC = nrow(V)
names = object$ynames
}
df2 = make.df.for.varlabels(BV = BV, names = names,
margins = margins, P = PP, R = CC)
df2$type = factor(df2$type)
plt = plt +
geom_label_repel(data = df2,
aes(x = .data$dim1, y = .data$dim2, label = .data$var, colour = .data$type, family = "mono", fontface = "bold"),
size = labelsize, show.legend = FALSE) +
scale_color_manual(values = c("0" = xcol, "1" = ycol)) +
coord_fixed() +
theme_lmda()
suppressWarnings(print(plt))
return(plt)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.