Description Usage Arguments Value References Examples
View source: R/ParLin_expectreg_homo_biv.R
Formula interface for the partially linear expectile regression using local linear expectile estimation for a homoscedastic error and a bivariate variable in the nonparametric function. For the nonparametric part, the general Rule-of-Thumb bandwidth selector proposed in Adam and Gijbels (2021b) is used. See Adam and Gijbels (2021b) for more details.
1 2 3 4 5 6 7 8 9 |
X |
The covariates data values for the linear part (of size n \times k). |
Y |
The response data values. |
Z |
The covariates data values for the nonparametric part (of size n \times 2). |
omega |
Numeric vector of level between 0 and 1 where 0.5 corresponds to the mean. |
kernel |
The kernel used to perform the estimation. In default setting,
|
grid |
Matrix of evaluation points used for the nonparametric part. In default setting, a grid of 10
equispaced grid-values in each direction on the domain of the variable |
ParLin_expectreg_homo_biv
partially linear expectile estimators
assuming a homoscedastic error and a bivariate covariate in the nonparametric part,
proposed and studied by Adam and Gijbels (2021b). ParLin_expectreg_homo_biv
returns a list whose components are:
Linear
The delta estimators for the linear part
Nonlinear
The estimation of the nonparametric part
according to the grid. The rows of the estimation matrix
are the grid on the first covariate data values (i.e. Z[,1]
)
and the columns the grid on the second covariate data values (i.e. Z[,2]
).
Adam, C. and Gijbels, I. (2021b). Partially linear expectile regression using local polynomial fitting. In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, Chapter 8, pages 139–160. Springer, New York.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | library(locpol)
library(lestat)
set.seed(6)
dist <- muniformdistribution(rep(0, 2), rep(1, 2))
values<-simulate(dist,200)
Z_1<-values[,1]
Z_2<-values[,2]
Z<-rbind(Z_1,Z_2)
gamma=cbind(3,-0.4)
set.seed(7)
eta_1<-rnorm(100,0,1)
X1=(gamma%*%Z)+(1.5*eta_1)
set.seed(8)
eta_2<-rnorm(100,0,2)
X2=(gamma%*%Z)+(1.5*eta_2)
X<-rbind(X1,X2)
set.seed(9)
epsilon<-rt(100,3)
delta_true<-rbind(0,-0.8)
Y=as.numeric((t(delta_true)%*%X)+(0.2*exp(1.5*(gamma%*%Z)))+epsilon)
ParLin_expectreg_homo_biv(X=t(X),Y=Y,Z=t(Z),omega=0.1,kernel=gaussK
,grid=cbind(seq(min(Z[,1]),max(Z[,1]),length.out=10),seq(min(Z[,2]),max(Z[,2]),length.out=10)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.