Description Usage Arguments Value References Examples
View source: R/ParLin_expectreg_hetero.R
Formula interface for the partially linear expectile regression using local linear expectile estimation for different heteroscedastic error structure and a univariate variable in the nonparametric function g(.). The model is of the form Y=δ^T X + g(Z) + σ(X) ε, Y=δ^T X + g(Z) + σ(Z) ε or Y=δ^T X + g(Z) + σ(Z,X) ε. See Table 1 in Adam and Gijbels (2021b) for more details.
1 2 3 4 5 6 7 8 | ParLin_expectreg_hetero(
X,
Y,
Z,
omega = 0.3,
kernel = gaussK,
heteroscedastic = c("X", "Z", "Z and X")
)
|
X |
The covariates data values for the linear part
(of size n \times k with |
Y |
The response data values. |
Z |
The covariate data values for the nonparametric part. |
omega |
Numeric vector of level between 0 and 1 where 0.5 corresponds to the mean. |
kernel |
The kernel used to perform the estimation. In default setting,
|
heteroscedastic |
Heteroscedastic error depending on |
ParLin_expectreg_hetero
partially linear expectile estimators
for different heteroscedastic error structures and a univariare variable in the nonparametric part,
proposed and studied by Adam and Gijbels (2021b). ParLin_expectreg_hetero
returns a list whose components are:
If the heteroscedastic error depends on Z:
Linear
The delta estimators for the linear part
Nonlinear
The estimation of the nonparametric part
according to the observed values Z_i.
If the heteroscedastic error depends on X:
Linear
The delta estimators for the linear part
Nonlinear_g
The estimation of the nonparametric part
according to the observed values Z_i.
Nonlinear_g_omega
The estimation of
the nonparametric part according to the observed values X_i (if X is univariate)
or to the couple of observed values (X_{1i},X_{2j}).
If the heteroscedastic error depends on Z and X:
Linear
The delta estimators for the linear part
Nonlinear_g
The estimation of the nonparametric part
according to the couple of the observed values (Z_i,X_j) (if X is univariate)
or to the observed values (Z_i,X_{1i},X_{2i}).
Adam, C. and Gijbels, I. (2021b). Partially linear expectile regression using local polynomial fitting. In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, Chapter 8, pages 139–160. Springer, New York.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | library(locpol)
set.seed(123)
Z<-runif(100,-3,3)
eta_1<-rnorm(100,0,1)
X1<-(0.9*Z)+(1.5*eta_1)
set.seed(1234)
eta_2<-rnorm(100,0,2)
X2<-(0.9*Z)+(1.5*eta_2)
X<-rbind(X1,X2)
set.seed(12345)
epsilon<-rnorm(100,0,1)
delta<-rbind(0.8,-0.8)
Y<-as.numeric((t(delta)%*%X)+(10*sin(0.9*Z))+(0.6*X1^2)*epsilon)
ParLin_expectreg_hetero(X=t(X),Y=Y,Z=Z,omega=0.3,kernel=gaussK,heteroscedastic="X")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.