Description Usage Arguments Value References Examples
View source: R/expectreg_loclin_bivariate.R
Formula interface for the local linear expectile estimation for a bivariate covariate case.
1 2 3 4 5 6 7 8 9 10 |
Z1 |
The first covariate data values. |
Z2 |
The second covariate data values. |
Y |
The response data values. |
omega |
Numeric vector of level between 0 and 1 where 0.5 corresponds to the mean. |
kernel |
The kernel used to perform the estimation. In default setting,
|
h |
Smoothing parameter, bandwidth. |
grid |
Matrix of evaluation points. In default setting, a grid of
equispaced grid-values on the domain of the variables |
expectreg_loclin_bivariate
local linear expectile estimator
proposed and studied by Adam and Gijbels (2021b) for a bivariate covariate case.
expectreg_loclin_bivariate
returns a matrix whose components are
the estimation of the bivariate expectile surface, of order ω according to the grid matrix.
The rows are the grid on the first covariate data values (i.e. Z1
)
and the columns the grid on the second covariate data values (i.e. Z2
).
Adam, C. and Gijbels, I. (2021b). Partially linear expectile regression using local polynomial fitting. In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, Chapter 8, pages 139–160. Springer, New York.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | library(locpol)
library(lestat)
set.seed(6)
dist <- muniformdistribution(rep(0, 2), rep(1, 2))
values<-simulate(dist,200)
Z_1<-values[,1]
Z_2<-values[,2]
Z<-rbind(Z_1,Z_2)
gamma=cbind(3,-0.4)
set.seed(7)
eta_1<-rnorm(100,0,1)
X1=(gamma%*%Z)+(1.5*eta_1)
set.seed(8)
eta_2<-rnorm(100,0,2)
X2=(gamma%*%Z)+(1.5*eta_2)
X<-rbind(X1,X2)
set.seed(9)
epsilon<-rt(100,3)
delta_true<-rbind(0,-0.8)
Y=as.numeric((t(delta_true)%*%X)+(0.2*exp(1.5*(gamma%*%Z)))+epsilon)
expectreg_loclin_bivariate(Z1=Z_1,Z2=Z_2,Y=Y,omega=0.1
,kernel=gaussK,h=0.1,grid=cbind(seq(min(Z_1),max(Z_1)
,length.out=10),seq(min(Z_2),max(Z_2),length.out=10)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.