Nothing
predict.logbin <- function(object, newdata = NULL, type = c("link", "response",
"terms"), terms = NULL, na.action = na.pass, checkminmax = TRUE,...)
{
type <- match.arg(type)
na.act <- object$na.action
object$na.action <- NULL
tt <- terms(object)
if (missing(newdata) || is.null(newdata)) {
mm <- X <- model.matrix(object)
mmDone <- TRUE
offset <- object$offset
} else {
Terms <- delete.response(tt)
m <- model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
if (!is.null(cl <- attr(Terms, "dataClasses")))
.checkMFClasses(cl, m)
if (checkminmax)
.checkXminmax(m, xminmax = object$xminmax)
X <- model.matrix(Terms, m)
offset <- rep(0, nrow(X))
if (!is.null(off.num <- attr(tt, "offset")))
for (i in off.num) offset <- offset + eval(attr(tt, "variables")[[i+1]], newdata)
if (!is.null(object$call$offset))
offset <- offset + eval(object$call$offset, newdata)
mmDone <- FALSE
}
n <- length(object$residuals)
p <- object$rank
p1 <- seq_len(p)
beta <- object$coefficients
predictor <- drop(X %*% beta)
if(!is.null(offset))
predictor <- predictor + offset
if (type == "terms") {
if (!mmDone) {
mm <- model.matrix(object)
mmDone <- TRUE
}
aa <- attr(mm, "assign")
ll <- attr(tt, "term.labels")
hasintercept <- attr(tt, "intercept") > 0L
if (hasintercept)
ll <- c("(Intercept)", ll)
aaa <- factor(aa, labels = ll)
asgn <- split(order(aa), aaa)
if (hasintercept) {
asgn$"(Intercept)" <- NULL
if(!mmDone) {
mm <- model.matrix(object)
mmDone <- TRUE
}
avx <- colMeans(mm)
termsconst <- sum(avx * beta)
}
nterms <- length(asgn)
if (nterms > 0) {
predictor <- matrix(ncol = nterms, nrow = NROW(X))
dimnames(predictor) <- list(rownames(X), names(asgn))
if (hasintercept)
X <- sweep(X, 2L, avx, check.margin = FALSE)
unpiv <- rep.int(0L, NCOL(X))
unpiv <- p1
for (i in seq.int(1L, nterms, length.out = nterms)) {
iipiv <- asgn[[i]]
ii <- unpiv[iipiv]
iipiv[ii == 0L] <- 0L
predictor[, i] <- if (any(iipiv > 0L))
X[, iipiv, drop = FALSE] %*% beta[iipiv]
else 0
}
if (!is.null(terms))
predictor <- predictor[, terms, drop = FALSE]
} else {
predictor <- matrix(0, n, 0L)
}
attr(predictor, "constant") <- if (hasintercept)
termsconst
else 0
}
if (missing(newdata) && !is.null(na.act))
predictor <- napredict(na.act, predictor)
switch(type, response = {predictor <- family(object)$linkinv(predictor)},
link = , terms =)
predictor
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.