Description Usage Arguments Details Value Author(s) References See Also Examples
This function utilizes OpenMx (Boker et al., 2011, 2014) to confirmatory test latent variable network models between P manifests and M latents. See the details section for information about the modeling framework used. All the input matrices can be assigned R matrices with numbers indicating fixed values and NA indicating a value is free to estimate.
| 1 2 3 4 | 
| data | An N (sample size) x P matrix or data frame containing the raw data, or a P x P variance-covariance matrix. | 
| lambda | A P x M matrix indicating factor loadings. Defaults to a full NA P x M matrix if psi or omega_psi is not missing, or a P x 0 dummy matrix. | 
| beta | An M x M matrix indicating linear effects between latent variables. Defaults to an M x M matrix containing only zeroes. | 
| omega_theta | A P x P matrix encoding the residual network structure. By default, theta is modeled instead. | 
| delta_theta | A P x P diagonal scaling matrix. Defaults to NA on all diagonal elements. Only used if omega_theta is modeled. | 
| omega_psi | An M x M matrix containing the latent network structure. Dy default, psi is modeled instead. | 
| delta_psi | A diagonal M x M scaling matrix. Defaults to an identity matrix. Only used if omega_psi is modeled. | 
| psi | An M x M variance-covariance matrix between latents and latent residuals. Defaults to a full NA matrix. | 
| theta | A P x P variance-covariance matrix of residuals of the observed variables. Defaults to a diagonal matrix containing NAs | 
| sampleSize | The sample size, only used if  | 
| fitInd | The fit of the independence model. Used to speed up estimation fitting multiple models. | 
| fitSat | The fit of the saturated model. Used to speed up estimation fitting multiple models. | 
| startValues | An optional named list containing starting values of each model. e.g.,  | 
| scale | Logical, should data be standardized before running lvnet? | 
| nLatents | The number of latents. Allows for quick specification when  | 
| lasso | The LASSO tuning parameter. | 
| lassoMatrix | Character vector indicating the names of matrices to apply LASSO regularization on. e.g.,  | 
| lassoTol | Tolerance for absolute values to be treated as zero in counting parameters. | 
| ebicTuning | Tuning parameter used in extended Bayesian Information Criterion. | 
| mimic | If set to  | 
| fitFunction | The fit function to be used.  | 
| exogenous | Numeric vector indicating which variables are exogenous. | 
The modeling framework follows the all-y LISREL framework for Structural Equation Models (SEM; Hayduk, 1987) to model relationships between P observed variables and M latent variables:
sigma = lambda * (I - beta)^(-1) psi (I - beta)^(-1 T) * lambda^T + theta
Where Sigma is the P x P model-implied covariance matrix, lambda a P x M matrix of factor loadings, B an M x M matrix containing regression effects between latent variables, Psi a M x M covariance matrix of the latent variables/residuals and Theta a P x P covariance matrix of residuals of the observed indicators.
The lvnet function allows for two extensions of this modeling framework. First, psi can be chosen to be modeled as follows:
psi = delta_psi (I - omega_psi)^(-1) delta_psi
In which delta_psi is a M x M diagonal scaling matrix and omega_psi a M x M matrix containing zeroes on the diagonal and partial correlation coefficients on the offdiagonal values of two latent variables conditioned on all other latent variables. omega_psi therefore corresponds to a Gaussian Graphical Model, or a network structure.
Similarly, theta can be chosen to be modeled as follows:
theta = delta_theta (I - omega_theta)^(-1) delta_theta
In which delta_theta is a P x P diagonal scaling matrix and omega_theta a P x P matrix containing zeroes on the diagonal and partial correlation coefficients on the offdiagonal values of two residuals conditioned on all other residuals.
Modeling omega_psi is termed Latent Network Modeling (LNM) and modeling omega_theta is termed Residual Network Modeling (RNM). lvnet automatically chooses the appropriate modeling framework based on the input.
An lvnet object, which is a list containing the following elements:
| matrices | A list containing thee estimated model matrices | 
| sampleStats | A list containing the covariance matrix ( | 
| mxResults | The OpenMx object of the fitted model | 
| fitMeasures | A named list containing the fit measures of the fitted model | 
Sacha Epskamp <mail@sachaepskamp.com>
Boker, S. M., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., ... Fox, J. (2011). OpenMx: an open source extended structural equation modelingframework. Psychometrika, 76(2), 306-317
Boker, S. M., Neale, M. C., Maes, H. H., Wilde, M. J., Spiegel, M., Brick, T. R., ..., Team OpenMx. (2014). Openmx 2.0 user guide [Computer software manual].
Hayduk, L. A. (1987).Structural equation modeling with LISREL: Essentials advances. Baltimore, MD, USA: Johns Hopkins University Press.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | # Load dataset:
library("lavaan")
data(HolzingerSwineford1939)
Data <- HolzingerSwineford1939[,7:15]
# Measurement model:
Lambda <- matrix(0, 9, 3)
Lambda[1:3,1] <- NA
Lambda[4:6,2] <- NA
Lambda[7:9,3] <- NA
# Fit CFA model:
CFA <- lvnet(Data, lambda = Lambda)
# Latent network:
Omega_psi <- matrix(c(
  0,NA,NA,
  NA,0,0,
  NA,0,0
),3,3,byrow=TRUE)
# Fit model:
LNM <- lvnet(Data, lambda = Lambda, omega_psi=Omega_psi)
# Compare fit:
lvnetCompare(cfa=CFA,lnm=LNM)
# Summary:
summary(LNM)
# Plot latents:
plot(LNM, "factorStructure")
 | 
Loading required package: OpenMx
To take full advantage of multiple cores, use:
  mxOption(NULL, 'Number of Threads', parallel::detectCores())
This is lavaan 0.5-23.1097
lavaan is BETA software! Please report any bugs.
Attaching package: 'lavaan'
The following object is masked from 'package:OpenMx':
    vech
sh: 1: cannot create /dev/null: Permission denied
sh: 1: wc: Permission denied
          Df      AIC      BIC     EBIC    Chisq Chisq diff Df diff
Saturated  0       NA       NA       NA  0.00000         NA      NA
cfa       24 7517.490 7595.339 7835.038 85.30552  85.305522      24
lnm       25 7516.494 7590.637 7818.921 86.31009   1.004565       1
            Pr(>Chisq)
Saturated           NA
cfa       8.502553e-09
lnm       3.162085e-01
========== lvnet ANALYSIS RESULTS ========== 
Input: 
	Model:			 
	Number of manifests:	 9 
	Number of latents:	 3 
	Number of parameters:	 20 
	Number of observations	 301
Test for exact fit: 
	Chi-square:		 86.31 
	DF:			 25 
	p-value:		 0
Information criteria: 
	AIC:			 7516.494 
	BIC:			 7590.637 
	Adjusted BIC:		 7527.208 
	Extended BIC:		 7818.921
Fit indices: 
	CFI:			 0.931 
	NFI:			 0.906 
	TLI:			 0.9 
	RFI:			 0.865 
	IFI:			 0.931 
	RNI:			 0.931 
	RMR:			 0.077 
	SRMR:			 0.061
RMSEA: 
	RMSEA:			 0.09 
	90% CI lower bound:	 0.07 
	90% CI upper bound:	 0.111 
	p-value:		 0.001
Parameter estimates:
    matrix row col          name Estimate
    lambda   1   1    lambda_1_1    0.708
    lambda   2   1    lambda_2_1    0.393
    lambda   3   1    lambda_3_1    0.517
    lambda   4   2    lambda_4_2    0.874
    lambda   5   2    lambda_5_2    0.971
    lambda   6   2    lambda_6_2    0.809
    lambda   7   3    lambda_7_3    0.537
    lambda   8   3    lambda_8_3    0.639
    lambda   9   3    lambda_9_3    0.587
     theta   1   1     theta_1_1    0.559
     theta   2   2     theta_2_2    1.135
     theta   3   3     theta_3_3    0.848
     theta   4   4     theta_4_4    0.370
     theta   5   5     theta_5_5    0.448
     theta   6   6     theta_6_6    0.356
     theta   7   7     theta_7_7    0.805
     theta   8   8     theta_8_8    0.487
     theta   9   9     theta_9_9    0.563
 omega_psi   1   2 omega_psi_1_2    0.422
 omega_psi   1   3 omega_psi_1_3    0.442
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.