Nothing
#' Side-by-side LV boxplots with ggplot2.
#'
#' An extension of standard boxplots which draws k letter statistics.
#' Conventional boxplots (Tukey 1977) are useful displays for conveying rough
#' information about the central 50\% of the data and the extent of the data.
#' For moderate-sized data sets (\eqn{n < 1000}), detailed estimates of tail
#' behavior beyond the quartiles may not be trustworthy, so the information
#' provided by boxplots is appropriately somewhat vague beyond the quartiles,
#' and the expected number of ``outliers'' and ``far-out'' values for a
#' Gaussian sample of size \eqn{n} is often less than 10 (Hoaglin, Iglewicz,
#' and Tukey 1986). Large data sets (\eqn{n \approx 10,000-100,000}) afford
#' more precise estimates of quantiles in the tails beyond the quartiles and
#' also can be expected to present a large number of ``outliers'' (about
#' \eqn{0.4 + 0.007 n}).
#' The letter-value box plot addresses both these shortcomings: it conveys
#' more detailed information in the tails using letter values, only out to the
#' depths where the letter values are reliable estimates of their
#' corresponding quantiles (corresponding to tail areas of roughly
#' \eqn{2^{-i}}); ``outliers'' are defined as a function of the most extreme
#' letter value shown. All aspects shown on the letter-value boxplot are
#' actual observations, thus remaining faithful to the principles that
#' governed Tukey's original boxplot.
#'
#'
#' @seealso \code{\link{stat_quantile}} to view quantiles conditioned on a
#' continuous variable.
#' @inheritParams ggplot2::geom_point
#' @param geom,stat Use to override the default connection between
#' \code{geom_lv} and \code{stat_lv}.
#' @param outlier.colour Override aesthetics used for the outliers. Defaults
#' come from \code{geom_point()}.
#' @param outlier.shape Override aesthetics used for the outliers. Defaults
#' come from \code{geom_point()}.
#' @param outlier.size Override aesthetics used for the outliers. Defaults
#' come from \code{geom_point()}.
#' @param outlier.stroke Override aesthetics used for the outliers. Defaults
#' come from \code{geom_point()}.
#' @param varwidth if \code{FALSE} (default) draw boxes that are the same size for each group. If
#' \code{TRUE}, boxes are drawn with widths proportional to the
#' square-roots of the number of observations in the groups (possibly
#' weighted, using the \code{weight} aesthetic).
#' @param width.method character, one of 'linear' (default), 'area', or 'height'. This parameter
#' determines whether the width of the box for letter value LV(i) should be proportional to i (linear), proportional to $2^{-i}$ (height), or whether
#' the area of the box should be proportional to $2^{-i}$ (area).
#' @export
#' @references McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of
#' box plots. The American Statistician 32, 12-16.
#' @examples
#' library(ggplot2)
#' p <- ggplot(mpg, aes(class, hwy))
#' p + geom_lv(aes(fill = after_stat(LV))) + scale_fill_brewer()
#' p + geom_lv() + geom_jitter(width = 0.2)
#' p + geom_lv(aes(fill = after_stat(LV))) + scale_fill_lv()
#'
#' # Outliers
#' p + geom_lv(varwidth = TRUE, aes(fill = after_stat(LV))) + scale_fill_lv()
#' p + geom_lv(fill = "grey80", colour = "black")
#' p + geom_lv(outlier.colour = "red", outlier.shape = 1)
#'
#' # Plots are automatically dodged when any aesthetic is a factor
#' p + geom_lv(aes(fill = drv))
#'
#' # varwidth adjusts the width of the boxes according to the number of observations
#' ggplot(ontime, aes(UniqueCarrier, TaxiIn + TaxiOut)) +
#' geom_lv(aes(fill = after_stat(LV)), varwidth=TRUE) +
#' scale_fill_lv() +
#' scale_y_sqrt() +
#' theme_bw()
#'
#' ontime$DayOfWeek <- as.POSIXlt(ontime$FlightDate)$wday
#' ggplot(ontime, aes(factor(DayOfWeek), TaxiIn + TaxiOut)) +
#' geom_lv(aes(fill = after_stat(LV))) +
#' scale_fill_lv() +
#' scale_y_sqrt() +
#' theme_bw()
geom_lv <- function(mapping = NULL, data = NULL, stat = "lv",
position = "dodge", outlier.colour = "black", outlier.shape = 19,
outlier.size = 1.5, outlier.stroke = 0.5, na.rm = TRUE,
varwidth = FALSE, width.method = "linear", show.legend = NA, inherit.aes = TRUE, ...)
{
ggplot2::layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomLv,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
na.rm = na.rm,
outlier.colour = outlier.colour,
outlier.shape = outlier.shape,
outlier.size = outlier.size,
outlier.stroke = outlier.stroke,
varwidth = varwidth,
width.method = width.method,
...
)
)
}
#' @rdname geom_lv
#' @importFrom grid grobTree
#' @export
GeomLv <- ggplot2::ggproto("GeomLv", ggplot2::Geom,
setup_data = function(data, params) {
# browser()
data$width <- data$width %||%
params$width %||% (resolution(data$x, FALSE) * 0.9)
if (!is.null(data$outliers)) {
suppressWarnings({
out_min <- vapply(data$outliers, min, numeric(1))
out_max <- vapply(data$outliers, max, numeric(1))
})
data$ymin_final <- pmin(out_min, data$ymin)
data$ymax_final <- pmax(out_max, data$ymax)
}
# if `varwidth` not requested or not available, don't use it
if (is.null(params) || is.null(params$varwidth) || !params$varwidth || is.null(data$relvarwidth)) {
data$xmin <- data$x - data$width / 2
data$xmax <- data$x + data$width / 2
} else {
# make `relvarwidth` relative to the size of the largest group
data$relvarwidth <- data$relvarwidth / max(data$relvarwidth)
data$xmin <- data$x - data$relvarwidth * data$width / 2
data$xmax <- data$x + data$relvarwidth * data$width / 2
}
data$width <- NULL
# don't delete the relative width for LV plots
# if (!is.null(data$relvarwidth)) data$relvarwidth <- NULL
data
},
draw_group = function(data, panel_scales, coord,
outlier.colour = "black", outlier.shape = 19,
outlier.size = 1.5, outlier.stroke = 0.5,
width.method="linear",
varwidth = FALSE) {
common <- tibble(
colour = data$colour,
size = data$size,
linewidth = data$linewidth,
linetype = data$linetype,
fill = ggplot2::alpha(data$fill, data$alpha),
group = data$group,
)
i <- seq_len(data$k[1]-1)-1
data$width <- data$xmax - data$xmin
lower <- rev(seq_len(data$k[1]-1)) +1
upper <- seq_len(data$k[1]-1)+1
if (width.method=="linear") {
offset <- c(0, (i / data$k[1])) * data$width/2
} else {
if (width.method=="height") {
height <- 2^(-c(1, as.numeric(data$LV)[-nrow(data)])+1)
offset <- (1-height)*data$width/2
} else {
if (width.method=="area") {
# browser()
areas <- 2^(-as.numeric(data$LV))
lheight <- c(0, -diff(data$lower))
uheight <- c(0, diff(data$upper))
offset <- (1- areas/lheight)*data$width/2
offset[is.infinite(offset)] <- data$width[1]/2
}
}
}
# boxes for lower letter values
# bottom rectangles:
lowbox <- tibble(
xmin = data$xmin[lower] + offset[lower],
xmax = data$xmax[lower] - offset[lower],
ymin = data$lower[lower-1],
ymax = data$lower[lower],
alpha = data$alpha[lower],
LV = data$LV[lower],
common[lower,],
)
if (width.method == "area") {
offset <- (1-areas/uheight)*data$width/2
offset[is.infinite(offset)] <- data$width[1]/2
}
# top rectangles:
hibox <- tibble(
xmin = data$xmin[upper] + offset[upper],
xmax = data$xmax[upper] - offset[upper],
ymin = data$upper[upper-1],
ymax = data$upper[upper],
alpha = data$alpha[upper],
LV = data$LV[upper],
common[upper,],
)
# medians, not rectangles:
medians <- tibble(
xmin = data$xmin[1],
xmax = data$xmax[1],
ymin = data$upper[1],
ymax = data$upper[1],
alpha = data$alpha[1],
LV = data$LV[1],
common[1,],
)
box <- rbind(medians, lowbox, hibox)
#browser()
medians <- subset(box, LV=="M")
medians <- transform(medians,
colour = fill,
x = xmin,
xend = xmax,
y = ymin,
yend = ymax
)
if (!is.null(data$outliers) && length(data$outliers[[1]] >= 1)) {
outliers <- tibble(
y = data$outliers[[1]],
x = data$x[[1]],
colour = outlier.colour %||% data$colour[1],
shape = outlier.shape %||% data$shape[1],
size = outlier.size %||% data$size[1],
stroke = outlier.stroke %||% data$stroke[1],
fill = NA,
alpha = NA,
)
outliers_grob <- GeomPoint$draw_panel(outliers, panel_scales, coord)
} else {
outliers_grob <- NULL
}
ggplot2:::ggname("geom_lv", grobTree(
outliers_grob,
GeomRect$draw_panel(box, panel_scales, coord),
GeomSegment$draw_panel(medians, panel_scales, coord)
))
},
draw_key = ggplot2::draw_key_rect,
default_aes = ggplot2::aes(weight = 1, colour = "grey50", fill = "grey80", size = 0.5,
alpha = 1, shape = 19, linewidth = 0.5, linetype = "solid", outlier.colour = "black",
outlier.shape = 19, outlier.size = 1.5, outlier.stroke = 0.5),
required_aes = c("x", "k", "LV")
)
#' @export
#' @rdname geom_lv
scale_fill_lv <- function(...) {
greys <- rev(RColorBrewer::brewer.pal(9, "Greys"))
oranges <- RColorBrewer::brewer.pal(3, "Oranges")
colors <- c("white", greys[2:4], oranges[3], greys[4:6], oranges[2],
greys[6:8], oranges[1], greys[8:9])
ggplot2::scale_fill_manual(..., values = colors)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.