| sam | R Documentation |
Produces an antimagic square of order m using Gray and MacDougall's method.
sam(m, u, A=NULL, B=A)
m |
Order of the magic square (not “ |
u |
See details section |
A,B |
Start latin squares, with default |
In Gray's terminology, sam(m,n) produces a
SAM(2m,2u+1,0).
The method is not vectorized.
To test for these properties, use functions such as
is.antimagic(), documented under is.magic.Rd.
Robin K. S. Hankin
I. D. Gray and J. A. MacDougall 2006. “Sparse anti-magic squares and vertex-magic labelings of bipartite graphs”, Discrete Mathematics, volume 306, pp2878-2892
magic,is.magic
sam(6,2)
jj <- matrix(c(
5, 2, 3, 4, 1,
3, 5, 4, 1, 2,
2, 3, 1, 5, 4,
4, 1, 2, 3, 5,
1, 4, 5, 2, 3),5,5)
is.sam(sam(5,2,B=jj))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.