mallet.top.words | R Documentation |
This function returns a data frame with two columns, one containing the most probable words as character values, the second containing the weight assigned to that word in the word weights vector you supplied.
mallet.top.words(topic.model, word.weights, num.top.words = 10)
topic.model |
A |
word.weights |
A vector of word weights for one topic, usually a row from the |
num.top.words |
The number of most probable words to return. If not specified, defaults to 10. |
a data.frame
with the top terms (term
) and their weights/probability (weight
).
## Not run: # Read in sotu example data data(sotu) sotu.instances <- mallet.import(id.array = row.names(sotu), text.array = sotu[["text"]], stoplist = mallet_stoplist_file_path("en"), token.regexp = "\\p{L}[\\p{L}\\p{P}]+\\p{L}") # Create topic model topic.model <- MalletLDA(num.topics=10, alpha.sum = 1, beta = 0.1) topic.model$loadDocuments(sotu.instances) # Train topic model topic.model$train(200) # Extract top words top_words <- mallet.top.words(topic.model, word.weights = topic_words[2,], num.top.words = 5) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.