mallet.topic.words | R Documentation |
This function returns a matrix with one row for every topic and one column for every word in the vocabulary.
mallet.topic.words(topic.model, normalized = FALSE, smoothed = FALSE)
topic.model |
A |
normalized |
If |
smoothed |
If |
a number of topics by vocabulary size matrix.
## Not run: # Read in sotu example data data(sotu) sotu.instances <- mallet.import(id.array = row.names(sotu), text.array = sotu[["text"]], stoplist = mallet_stoplist_file_path("en"), token.regexp = "\\p{L}[\\p{L}\\p{P}]+\\p{L}") # Create topic model topic.model <- MalletLDA(num.topics=10, alpha.sum = 1, beta = 0.1) topic.model$loadDocuments(sotu.instances) # Train topic model topic.model$train(200) # Extract results doc_topics <- mallet.doc.topics(topic.model, smoothed=TRUE, normalized=TRUE) topic_words <- mallet.topic.words(topic.model, smoothed=TRUE, normalized=TRUE) top_words <- mallet.top.words(topic.model, word.weights = topic_words[2,], num.top.words = 5) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.