bmds | R Documentation |
A Bayesian formulation of classical Multidimensional Scaling is presented.
Even though this method is based on MCMC sampling, we only return maximum a posterior (MAP) estimate
that maximizes the posterior distribution. Due to its nature without any special tuning,
increasing mc.iter
requires much computation.
bmds(
data,
ndim = 2,
par.a = 5,
par.alpha = 0.5,
par.step = 1,
mc.iter = 8128,
verbose = TRUE
)
data |
an |
ndim |
an integer-valued target dimension. |
par.a |
hyperparameter for conjugate prior on variance term, i.e., |
par.alpha |
hyperparameter for conjugate prior on diagonal term, i.e., |
par.step |
stepsize for random-walk, which is standard deviation of Gaussian proposal. |
mc.iter |
the number of MCMC iterations. |
verbose |
a logical; |
a named list containing
an (n\times ndim)
matrix whose rows are embedded observations.
discrepancy between embedded and origianl data as a measure of error.
oh_bayesian_2001amaotai
## use simple example of iris dataset
data(iris)
idata = as.matrix(iris[,1:4])
## run Bayesian MDS
# let's run 10 iterations only.
iris.cmds = cmds(idata, ndim=2)
iris.bmds = bmds(idata, ndim=2, mc.iter=5, par.step=(2.38^2))
## extract coordinates and class information
cx = iris.cmds$embed # embedded coordinates of CMDS
bx = iris.bmds$embed # BMDS
icol = iris[,5] # class information
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,1))
mc = paste0("CMDS with STRESS=",round(iris.cmds$stress,4))
mb = paste0("BMDS with STRESS=",round(iris.bmds$stress,4))
plot(cx, col=icol,pch=19,main=mc)
plot(bx, col=icol,pch=19,main=mb)
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.