Description Usage Arguments Value See Also Examples
We measure distance between two empirical cumulative distribution functions (ECDF). For
simplicity, we only take an input of ecdf
objects from stats package.
1 |
elist |
a length N list of |
method |
name of the distance/dissimilarity measure. Case insensitive. |
p |
exponent for |
as.dist |
a logical; |
either dist
object of an (N\times N) symmetric matrix of pairwise distances by as.dist
argument.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## toy example : 10 of random and uniform distributions
mylist = list()
for (i in 1:10){
mylist[[i]] = stats::ecdf(stats::rnorm(50, sd=2))
}
for (i in 11:20){
mylist[[i]] = stats::ecdf(stats::runif(50, min=-5))
}
## compute Kolmogorov-Smirnov distance
dm = ecdfdist(mylist, method="KS")
## visualize
mks =" KS distances of 2 Types"
opar = par(no.readonly=TRUE)
par(pty="s")
image(dm[,nrow(dm):1], axes=FALSE, main=mks)
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.