pdeterminant: Calculate the Pseudo-Determinant of a Matrix

Description Usage Arguments Value References Examples

View source: R/pdeterminant.R

Description

When a given square matrix A is rank deficient, determinant is zero. Still, we can compute the pseudo-determinant by multiplying all non-zero eigenvalues. Since thresholding to determine near-zero eigenvalues is subjective, we implemented the function as of original limit problem. When matrix is non-singular, it coincides with traditional determinant.

Usage

1

Arguments

A

a square matrix whose pseudo-determinant be computed.

Value

a scalar value for computed pseudo-determinant.

References

\insertRef

holbrook_differentiating_2018maotai

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
## show the convergence of pseudo-determinant
#  settings
n = 10
A = cov(matrix(rnorm(5*n),ncol=n))   # (n x n) matrix
k = as.double(Matrix::rankMatrix(A)) # rank of A

# iterative computation
ntry = 11
del.vec = exp(-(1:ntry))
det.vec = rep(0,ntry)
for (i in 1:ntry){
  del = del.vec[i]
  det.vec[i] = det(A+del*diag(n))/(del^(n-k))
}

# visualize the results
opar <- par(no.readonly=TRUE)
plot(1:ntry, det.vec, main=paste("true rank is ",k," out of ",n,sep=""),"b", xlab="iterations")
abline(h=pdeterminant(A),col="red",lwd=1.2)
par(opar)

maotai documentation built on Oct. 25, 2021, 9:06 a.m.