Nothing
#' @rdname marginal_effects
#' @importFrom prediction find_data
#' @export
marginal_effects.polr <-
function(model,
data = find_data(model, parent.frame()),
variables = NULL,
type = NULL,
eps = 1e-7,
varslist = NULL,
as.data.frame = TRUE,
...) {
# identify classes of terms in `model`
if (is.null(varslist)) {
varslist <- find_terms_in_model(model, variables = variables)
}
# estimate numerical derivatives with respect to each variable (for numeric terms in the model)
# add discrete differences for logical terms
out1 <- lapply(c(varslist$nnames, varslist$lnames), dydx, data = data, model = model, type = NULL, eps = eps, as.data.frame = as.data.frame, ...)
# add discrete differences for factor terms
## exact number depends on number of factor levels
out2 <- list()
for (i in seq_along(varslist$fnames)) {
out2[[i]] <- dydx.factor(data = data, model = model, varslist$fnames[i], fwrap = FALSE, type = NULL, as.data.frame = as.data.frame, ...)
}
out <- c(out1, out2)
if (isTRUE(as.data.frame)) {
out <- do.call("cbind.data.frame", out[vapply(out, function(x) length(x) > 0, FUN.VALUE = logical(1))])
} else {
out <- do.call("cbind", out[vapply(out, function(x) length(x) > 0, FUN.VALUE = logical(1))])
}
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.