Nothing
#' Specify a Gamma sampling distribution
#'
#' This function can be used in the \code{family} argument of \code{\link{create_sampler}}
#' or \code{\link{generate_data}} to specify a Gamma sampling distribution.
#'
#' @export
#' @param link the name of a link function. Currently the only allowed link function
#' for the gamma distribution is \code{"log"}.
#' @param shape.vec optional formula specification of unequal shape parameter.
#' @param shape.prior prior for gamma shape parameter. Supported prior distributions:
#' \code{\link{pr_fixed}} with a default value of 1, \code{\link{pr_exp}} and
#' \code{\link{pr_gamma}}. The current default is \code{pr_gamma(shape=0.1, rate=0.1)}.
#' @param control options for the Metropolis-Hastings algorithm employed
#' in case the shape parameter is to be inferred. Function \code{\link{set_MH}}
#' can be used to change the default options. The two choices of proposal
#' distribution type supported are "RWLN" for a random walk proposal on the
#' log-shape scale, and "gamma" for an approximating gamma proposal, found using
#' an iterative algorithm. In the latter case, a Metropolis-Hastings accept-reject
#' step is currently omitted, so the sampling algorithm is an approximate one,
#' though often quite accurate and efficient.
#' @returns A family object.
#' @references
#' J.W. Miller (2019).
#' Fast and Accurate Approximation of the Full Conditional for Gamma Shape Parameters.
#' Journal of Computational and Graphical Statistics 28(2), 476-480.
f_gamma <- function(link="log", shape.vec = ~ 1, shape.prior = pr_gamma(0.1, 0.1),
control = set_MH(type="RWLN", scale=0.2, adaptive=TRUE)) {
family <- "gamma"
link <- match.arg(link)
linkinv <- make.link(link)$linkinv
if (!inherits(shape.vec, "formula")) stop("'shape.vec' must be a formula")
if (is_numeric_scalar(shape.prior))
shape.prior <- pr_fixed(value = shape.prior)
else
if (!is.environment(shape.prior)) stop("'shape.prior' must either be a numeric scalar or a prior specification")
switch(shape.prior[["type"]],
fixed = {
if (shape.prior[["value"]] <= 0)
stop("gamma shape parameter must be positive")
},
exp = { # special case of gamma
shape.prior <- pr_gamma(shape=1, rate=1/shape.prior[["scale"]])
},
gamma = {},
stop("unsupported prior for gamma shape parameter")
)
alpha.fixed <- shape.prior[["type"]] == "fixed"
shape.prior$init(1L) # scalar parameter
alpha.scalar <- intercept_only(shape.vec)
alpha0 <- NULL
get_shape <- function() stop("please call method 'init' first")
init <- function(data, y=NULL) {
get_shape <<- make_get_shape(data)
if (!is.null(y)) {
if (!is.numeric(y)) stop("non-numeric target value not allowed in case of Gamma sampling distribution")
if (any(y <= 0)) stop("response variable modelled by Gamma distribution must be strictly positive")
}
y
}
make_get_shape <- function(data) {
if (alpha.scalar) {
alpha0 <<- 1
} else {
alpha0 <<- get_var_from_formula(shape.vec, data)
}
if (alpha.fixed) {
alpha0 <<- alpha0 * shape.prior[["value"]]
function(p) alpha0
} else {
if (alpha.scalar)
function(p) p[["gamma_shape_"]]
else
function(p) alpha0 * p[["gamma_shape_"]]
}
}
g <- function(y, p) y * exp(-p[["e_"]]) + p[["e_"]]
if (!alpha.fixed) {
if (!is.environment(control)) stop("f_gamma: 'control' argument must be an environment created with function set_MH")
control$type <- match.arg(control[["type"]], c("RWLN", "gamma"))
make_draw_shape <- function(y) {
# set up sampler for full conditional posterior for alpha, given linear predictor
n <- length(y)
# MH within Gibbs
switch(control[["type"]],
RWLN = {
f <- function(p) {
alpha <- p[["gamma_shape_"]]
alpha.star <- control$propose(alpha)
}
if (alpha.scalar) {
sumlogy <- sum(log(y))
f <- add(f, quote(
log.ar.post <-
(shape.prior[["shape"]] - 1) * log(alpha.star/alpha) - shape.prior[["rate"]] * (alpha.star - alpha) +
n * (lgamma(alpha) - lgamma(alpha.star) + alpha.star * log(alpha.star) - alpha * log(alpha)) +
(alpha.star - alpha) * (sumlogy - sum(g(y, p)))
))
} else {
f <- f |>
add(quote(alpha.vec <- alpha0 * alpha)) |>
add(quote(alpha.star.vec <- alpha0 * alpha.star)) |>
add(quote(
log.ar.post <-
(shape.prior[["shape"]] - 1) * log(alpha.star/alpha) - shape.prior[["rate"]] * (alpha.star - alpha) +
sum(lgamma(alpha.vec) - lgamma(alpha.star.vec)) +
sum(alpha.star.vec * log(alpha.star.vec * y)) -
sum(alpha.vec * log(alpha.vec * y)) +
sum((alpha.vec - alpha.star.vec) * g(y, p))
))
}
add(f, quote(if (control$MH_accept(alpha.star, alpha, log.ar.post)) alpha.star else alpha))
},
gamma = {
# Miller's gamma approximation of the shape's full conditional
# iteration starts with approximate gamma density derived using Stirling's formula
if (alpha.scalar) {
A0 <- shape.prior[["shape"]] + 0.5 * n
B00 <- shape.prior[["rate"]] - sum(log(y)) - n
function(p) {
A <- A0
B0 <- B00 + sum(g(y, p))
B <- B0
for (i in 1:10) {
a <- A/B
A <- shape.prior[["shape"]] + n*a*(a * trigamma(a) - 1)
B <- B0 + (A - shape.prior[["shape"]])/a + n*(digamma(a) - log(a))
if (abs(a/(A/B) - 1) < 1e-8) break
}
rgamma(1L, A, B)
}
# To add an MH correction step:
# (does not seem necessary, as the approximation is often excellent)
#alpha.star <- rgamma(1L, A, B)
#alpha <- p[["gamma_shape_"]]
#log.ar <- n * (lgamma(alpha) - lgamma(alpha.star) + alpha.star * log(alpha.star) - alpha * log(alpha)) +
# (alpha.star - alpha) * (sumlogy - sum(p[["e_"]]) - sum(y * exp(-p[["e_"]]))) +
# (A - shape.prior$shape) * log(alpha/alpha.star) - (B - shape.prior$rate) * (alpha - alpha.star)
#if (log(runif(1L)) < log.ar) alpha.star else alpha
} else {
ala0 <- sum(alpha0 * log(alpha0))
A0 <- shape.prior[["shape"]] + 0.5 * n
B00 <- shape.prior[["rate"]] - sum(alpha0 * (log(y) + 1))
function(p) {
A <- A0
B0 <- B00 + sum(alpha0 * g(y, p))
B <- B0
for (i in 1:10) {
a <- A/B
a.vec <- a * alpha0
A <- shape.prior[["shape"]] - sum(a.vec) + sum(a.vec * a.vec * trigamma(a.vec))
B <- B0 + (A - shape.prior[["shape"]])/a - log(a) * sum(alpha0) +
sum(alpha0 * digamma(a.vec)) - ala0
if (abs(a/(A/B) - 1) < 1e-8) break
}
rgamma(1L, A, B)
}
# possibly add MH correction step
}
}
)
}
}
make_llh <- function(y) {
n <- length(y)
if (alpha.fixed) {
alpha <- get_shape()
if (alpha.scalar) {
llh_0 <- (alpha - 1) * sum(log(y))
llh_0 <- llh_0 + n * (alpha * log(alpha) - lgamma(alpha))
function(p) llh_0 - alpha * sum(g(y, p))
} else {
llh_0 <- sum((alpha - 1) * log(y))
llh_0 <- llh_0 + sum(alpha * log(alpha) - lgamma(alpha))
function(p) llh_0 - sum(alpha * g(y, p))
}
} else {
llh_0 <- -sum(log(y))
if (alpha.scalar) {
function(p) {
alpha <- get_shape(p)
(1 - alpha) * llh_0 + n * (alpha * log(alpha) - lgamma(alpha)) - alpha * sum(g(y, p))
}
} else
function(p) {
alpha <- get_shape(p)
llh_0 + sum(alpha * log(alpha * y) - lgamma(alpha)) - sum(alpha * g(y, p))
}
}
}
make_llh_i <- function(y) {
if (alpha.fixed) {
alpha <- get_shape()
pllh_0 <- alpha * log(alpha) - lgamma(alpha) + (alpha - 1) * log(y)
if (alpha.scalar)
function(draws, i, e_i) {
nr <- dim(e_i)[1L]
rep_each(pllh_0[i], nr) - alpha * (e_i + rep_each(y[i], nr) * exp(-e_i))
}
else
function(draws, i, e_i) {
nr <- dim(e_i)[1L]
rep_each(pllh_0[i], nr) - rep_each(alpha[i], nr) * (e_i + rep_each(y[i], nr) * exp(-e_i))
}
} else {
if (alpha.scalar)
function(draws, i, e_i) {
nr <- dim(e_i)[1L]
alpha <- as.numeric(as.matrix.dc(draws[["gamma_shape_"]], colnames=FALSE))
alpha * log(alpha) - lgamma(alpha) + (alpha - 1) * rep_each(log(y[i]), nr) +
- alpha * (e_i + rep_each(y[i], nr) * exp(-e_i))
}
else
function(draws, i, e_i) {
nr <- dim(e_i)[1L]
alpha_i <- outer(as.numeric(as.matrix.dc(draws[["gamma_shape_"]], colnames=FALSE)), alpha0[i])
alpha_i * log(alpha_i) - lgamma(alpha_i) + (alpha_i - 1) * rep_each(log(y[i]), nr) +
- alpha_i * (e_i + rep_each(y[i], nr) * exp(-e_i))
}
}
}
make_rpredictive <- function(newdata, weights=NULL) {
if (is.integer(newdata)) {
# in-sample prediction/replication, linear predictor,
# or custom X case, see prediction.R
nn <- newdata
} else {
nn <- nrow(newdata)
get_shape <- make_get_shape(newdata)
}
if (is.null(weights)) {
function(p, lp) {
alpha <- get_shape(p)
rgamma(nn, shape=alpha, rate=alpha*exp(-lp))
}
} else {
function(p, lp) {
alpha <- get_shape(p)
rgamma(nn, shape=weights*alpha, rate=alpha*exp(-lp))
}
}
}
environment()
}
#' Specify a Gaussian-Gamma sampling distribution
#'
#' This function can be used in the \code{family} argument of
#' \code{\link{create_sampler}} or \code{\link{generate_data}} to specify a
#' Gaussian-Gamma sampling distribution, i.e., a Gaussian sampling distribution
#' whose variances are observed subject to error according to a Gamma
#' distribution.
#'
#' @export
#' @param link the name of a link function. Currently the only allowed link function
#' for this distribution family is \code{"identity"}.
#' @param var.model a formula specifying the terms of a variance model.
#' The left-hand side of the formula should specify the observed variances,
#' unless the family object is used for data generation only.
#' Several types of model terms on the right-hand side of the formula are supported:
#' a regression term for the log-variance specified with \code{\link{vreg}(...)},
#' and a term \code{\link{vfac}(...)} for multiplicative modelled factors
#' at a certain level specified by a factor variable. In addition, \code{\link{reg}} and \code{\link{gen}}
#' can be used to specify regression or random effect terms. In that case the prior distribution
#' of the coefficients is not exactly normal, but instead Multivariate Log inverse Gamma (MLiG),
#' see also \code{\link{pr_MLiG}}.
#' @param ... further arguments passed to \code{\link{f_gamma}}.
#' @returns A family object.
f_gaussian_gamma <- function(link="identity", var.model, ...) {
family <- "gaussian_gamma"
link <- match.arg(link)
linkinv <- make.link(link)$linkinv
y.family <- f_gaussian(link=link, var.prior=1, var.model=var.model)
var.family <- f_gamma(...)
self <- environment()
sigmasq <- NULL # placeholder for variance data vector
init <- function(data, y=NULL) {
if (is.null(y)) {
y.family$init(data)
var.family$init(data)
} else {
y <- y.family$init(data, y)
sigmasq <<- get_response(var.model, data)
if (is.null(sigmasq)) stop("no variance data vector specified")
if (!all(is.finite(sigmasq))) stop(sum(!is.finite(sigmasq)), " missing or infinite value(s) in variance data vector")
sigmasq <<- var.family$init(data, sigmasq)
}
copy_objects(y.family, self,
c("sigma.fixed", "modeled.Q", "Q0", "Q0.type", "Vmod", "types")
)
copy_objects(var.family, self,
c("alpha.fixed", "control", "get_shape",
if (var.family[["alpha.fixed"]]) NULL else "shape.prior")
)
y
}
compute_Q <- NULL
set_Vmod <- function(Vmod) {
y.family$set_Vmod(Vmod)
compute_Q <<- function(p, Qfactor=NULL) y.family$compute_Q(p, Qfactor)
}
g <- function(y, p) y * p[["Q_"]] - log(p[["Q_"]])
make_draw_shape <- function(y) {
draw_shape <- var.family$make_draw_shape(y)
assign("g", g, envir=environment(draw_shape))
draw_shape
}
make_llh <- function(y) {
llh_gaussian <- y.family$make_llh(y)
llh_gamma <- var.family$make_llh(sigmasq)
assign("g", g, envir=environment(llh_gamma))
function(p, SSR) llh_gaussian(p, SSR) + llh_gamma(p)
}
make_llh_i <- function(y) {
llh_i_gaussian <- y.family$make_llh_i(y)
llh_i_gamma <- var.family$make_llh_i(sigmasq)
function(draws, i, e_i) llh_i_gaussian(draws, i, e_i) + llh_i_gamma(draws, i, e_i)
}
self
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.