Description Usage Arguments Value References Examples
Graph-constrained regression with addition of a diagonal matrix multiplied by a predefined (small) scalar to handle the non-invertibility of a graph Laplacian matrix (see: References).
Bootstrap confidence intervals computation is available (not set as a default option).
1 2 3 |
Q |
graph-originated penalty matrix (p \times p); typically: a graph Laplacian matrix |
y |
response values matrix (n \times 1) |
Z |
design matrix (n \times p) modeled as random effects variables (to be penalized in regression modeling); assumed to be already standarized |
X |
design matrix (n \times k) modeled as fixed effects variables (not to be penalized in regression modeling); should contain colum of 1s if intercept is to be considered in a model |
lambda.2 |
(small) scalar value of regularization parameter for diagonal matrix by adding which the |
compute.boot.CI |
logical whether or not compute bootstrap confidence intervals for b regression coefficient estimates |
boot.R |
number of bootstrap replications used in bootstrap confidence intervals computation |
boot.conf |
confidence level assumed in bootstrap confidence intervals computation |
boot.set.seed |
logical whether or not set seed in bootstrap confidence intervals computation |
boot.parallel |
value of |
boot.ncpus |
value of |
verbose |
logical whether or not set verbose mode (print out function execution messages) |
b.est |
vector of b coefficient estimates |
beta.est |
vector of β coefficient estimates |
lambda.Q |
λ_Q regularization parameter value |
lambda.R |
|
lambda.2 |
|
boot.CI |
data frame with two columns, |
Karas, M., Brzyski, D., Dzemidzic, M., J., Kareken, D.A., Randolph, T.W., Harezlak, J. (2017). Brain connectivity-informed regularization methods for regression. doi: https://doi.org/10.1101/117945
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | set.seed(1234)
n <- 200
p1 <- 10
p2 <- 90
p <- p1 + p2
# Define graph adjacency matrix
A <- matrix(rep(0, p*p), nrow = p, ncol = p)
A[1:p1, 1:p1] <- 1
A[(p1+1):p, (p1+1):p] <- 1
L <- Adj2Lap(A)
# Define Q penalty matrix as graph Laplacian matrix normalized)
Q <- L2L.normalized(L)
# Define Z,X design matrices and aoutcome y
Z <- matrix(rnorm(n*p), nrow = n, ncol = p)
b.true <- c(rep(1, p1), rep(0, p2))
X <- matrix(rnorm(n*3), nrow = n, ncol = 3)
beta.true <- runif(3)
intercept <- 0
eta <- intercept + Z %*% b.true + X %*% beta.true
R2 <- 0.5
sd.eps <- sqrt(var(eta) * (1 - R2) / R2)
error <- rnorm(n, sd = sd.eps)
y <- eta + error
## Not run:
riPEERc.out <- riPEERc(Q, y, Z, X)
plt.df <- data.frame(x = 1:p, y = riPEERc.out$b.est)
ggplot(plt.df, aes(x = x, y = y, group = 1)) + geom_line() + labs("b estimates")
## End(Not run)
## Not run:
# riPEERc with 0.95 bootstrap confidence intervals computation
riPEERc.out <- riPEERc(Q, y, Z, X, compute.boot.CI = TRUE, boot.R = 500)
plt.df <- data.frame(x = 1:p, y = riPEERc.out$b.est,
lo = riPEERc.out$boot.CI[,1],
up = riPEERc.out$boot.CI[,2])
ggplot(plt.df, aes(x = x, y = y, group = 1)) + geom_line() +
geom_ribbon(aes(ymin=lo, ymax=up), alpha = 0.3)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.