Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
out.width = '40%', fig.align="center",
message=FALSE
)
## -----------------------------------------------------------------------------
library(magrittr)
library(dplyr)
library(ggplot2)
library(meshed)
set.seed(2021)
SS <- 50 # coord values for jth dimension
dd <- 2 # spatial dimension
n <- SS^2 # number of locations
p <- 3 # number of covariates
xlocs <- seq(0, 1, length.out=SS)
coords <- expand.grid(list(xlocs, xlocs))
sigmasq <- 1.5
nu <- 0.5
phi <- 10
tausq <- .1
# covariance at coordinates
CC <- sigmasq * exp(-phi * as.matrix(dist(coords)))
# cholesky of covariance matrix
LC <- t(chol(CC))
# spatial latent effects are a GP
w <- LC %*% rnorm(n)
# measurement errors
eps <- tausq^.5 * rnorm(n)
# covariates and coefficients
X <- matrix(rnorm(n*p), ncol=p)
Beta <- matrix(rnorm(p), ncol=1)
# univariate outcome, fully observed
y_full <- X %*% Beta + w + eps
# now introduce some NA values in the outcomes
y <- y_full %>% matrix(ncol=1)
y[sample(1:n, n/5, replace=FALSE), ] <- NA
simdata <- coords %>%
cbind(data.frame(Outcome_full= y_full,
Outcome_obs = y,
w = w))
simdata %>% ggplot(aes(Var1, Var2, fill=w)) +
geom_raster() +
scale_fill_viridis_c() +
theme_minimal() + ggtitle("w: Latent GP")
simdata %>% ggplot(aes(Var1, Var2, fill=y)) +
geom_raster() +
scale_fill_viridis_c() +
theme_minimal() + ggtitle("y: Observed outcomes")
## -----------------------------------------------------------------------------
mcmc_keep <- 200 # too small! this is just a vignette.
mcmc_burn <- 400
mcmc_thin <- 2
mesh_total_time <- system.time({
meshout <- spmeshed(y, X, coords,
#axis_partition=c(10,10), #same as block_size=25
block_size = 25,
n_samples = mcmc_keep, n_burn = mcmc_burn, n_thin = mcmc_thin,
n_threads = 2,
verbose = 0,
prior=list(phi=c(1,30))
)})
## -----------------------------------------------------------------------------
summary(meshout$lambda_mcmc[1,1,]^2)
summary(meshout$theta_mcmc[1,1,])
summary(meshout$tausq_mcmc[1,])
summary(meshout$beta_mcmc[1,1,])
## -----------------------------------------------------------------------------
# process means
wmesh <- data.frame(w_mgp = meshout$w_mcmc %>% summary_list_mean())
# predictions
ymesh <- data.frame(y_mgp = meshout$yhat_mcmc %>% summary_list_mean())
outdf <- meshout$coordsdata %>%
cbind(wmesh, ymesh) %>%
left_join(simdata)
outdf %>%
ggplot(aes(Var1, Var2, fill=w_mgp)) +
geom_raster() +
scale_fill_viridis_c() +
theme_minimal() + ggtitle("w: recovered")
outdf %>%
ggplot(aes(Var1, Var2, fill=y_mgp)) +
geom_raster() +
scale_fill_viridis_c() +
theme_minimal() + ggtitle("y: predictions")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.