Computes mean squared error for rank or cdf

Description

mse.meteDist computes mean squared error for rank or cdf between METE prediction and data

Usage

1
2
3
4
5
mse(x, ...)

## S3 method for class 'meteDist'
mse(x, type = c("rank", "cumulative"), relative = TRUE,
  log = FALSE, ...)

Arguments

x

a meteDist object

...

arguments to be passed to methods

type

'rank' or 'cumulative'

relative

logical; if true use relative MSE

log

logical; if TRUE calculate MSE on logged distirbution. If FALSE use arithmetic scale.

Details

See Examples.

Value

numeric; the value of the mean squared error.

Author(s)

Andy Rominger <ajrominger@gmail.com>, Cory Merow

References

Harte, J. 2011. Maximum entropy and ecology: a theory of abundance, distribution, and energetics. Oxford University Press.

See Also

mseZ.meteDist

Examples

1
2
3
4
5
6
7
8
9
data(arth)
esf1 <- meteESF(spp=arth$spp,
                abund=arth$count,
                power=arth$mass^(.75),
                minE=min(arth$mass^(.75)))
sad1 <- sad(esf1)
mse(sad1, type='rank', relative=FALSE)
ebar1 <- ebar(esf1)
mse(ebar1)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.