Nothing
#' Computes probabilities of (relabeled) cluster and kappas.
#'
#' \code{assignprobandkappas} returns a list with information on probabilities of
#' cluster belonging and Cohen's kappas.
#' @param variables internally provided by \code{summary.miclust}.
#' @param k internally provided by \code{summary.miclust}.
#' @param metriccent internally provided by \code{summary.miclust}.
#' @param data internally provided by \code{summary.miclust}.
#' @param initialcluster internally provided by \code{summary.miclust}.
#' @return internal value to be used by \code{summary.miclust}.
#' @keywords internal
#' @importFrom flexclust kcca predict
assignprobandkappas <- function(variables, k, metriccent, data, initialcluster) {
res <- NULL
dat <- data[[1]][, variables]
if (class(dat) == "numeric") {
dat <- as.data.frame(dat)
names(dat) <- variables
}
mod <- kcca(x = dat, k = initialcluster, family = metriccent, simple = TRUE)
n <- dim(data[[1]])[1]
m <- length(data)
preds <- matrix(nrow = n, ncol = m)
preds[, 1] <- predict(mod)
kappas <- rep(NA, m - 1)
for (i in 2:m) {
dat <- data[[i]][, variables]
if (class(dat) == "numeric") {
dat <- as.data.frame(dat)
names(dat) <- variables
}
mod1 <- kcca(x = dat, k = initialcluster, family = metriccent, simple = TRUE)
aux <- relabelclusters(refcluster = preds[, 1], cluster = mod1@cluster)
preds[, i] <- aux$newcluster
kappas[i - 1] <- aux$kappa
}
classmatrix <- matrix(nrow = n, ncol = k)
for (i in 1:n) {
aux <- preds[i, ]
for (j in 1:k)
classmatrix[i, j] <- sum(aux == j)
}
classmatrix <- prop.table(classmatrix, 1)
classmatrix <- as.data.frame(classmatrix)
names(classmatrix) <- paste0("C", 1:k)
preds <- as.data.frame(preds)
names(preds) <- paste0("imp", 1:m)
res$classmatrix <- classmatrix
res$clustervectors <- preds
res$kappas <- kappas
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.