DIF | R Documentation |
This function runs the Wald and likelihood-ratio approaches for testing differential
item functioning (DIF) with two or more groups. This is primarily a convenience wrapper to the
multipleGroup
function for performing standard DIF procedures. Independent
models can be estimated in parallel by defining a parallel object with mirtCluster
,
which will help to decrease the run time. For best results, the baseline model should contain
a set of 'anchor' items and have freely estimated hyper-parameters in the focal groups.
DIF(
MGmodel,
which.par,
scheme = "add",
items2test = 1:extract.mirt(MGmodel, "nitems"),
groups2test = "all",
seq_stat = "SABIC",
Wald = FALSE,
p.adjust = "none",
pairwise = FALSE,
return_models = FALSE,
return_seq_model = FALSE,
max_run = Inf,
plotdif = FALSE,
type = "trace",
simplify = TRUE,
verbose = TRUE,
...
)
MGmodel |
an object returned from |
which.par |
a character vector containing the parameter names which will be inspected for DIF |
scheme |
type of DIF analysis to perform, either by adding or dropping constraints across groups. These can be:
|
items2test |
a numeric vector, or character vector containing the item names, indicating
which items will be tested for DIF. In models where anchor items are known, omit them from
this vector. For example, if items 1 and 2 are anchors in a 10 item test, then
|
groups2test |
a character vector indicating which groups to use in the DIF testing
investigations. Default is |
seq_stat |
select a statistic to test for in the sequential schemes. Potential values are
(in descending order of power) |
Wald |
logical; perform Wald tests for DIF instead of likelihood ratio test? |
p.adjust |
string to be passed to the |
pairwise |
logical; perform pairwise tests between groups when the number of groups is greater than 2? Useful as quickly specified post-hoc tests |
return_models |
logical; return estimated model objects for further analysis? Default is FALSE |
return_seq_model |
logical; on the last iteration of the sequential schemes, return
the fitted multiple-group model containing the freely estimated parameters indicative of
DIF? This is generally only useful when |
max_run |
a number indicating the maximum number of cycles to perform in sequential searches. The default is to perform search until no further DIF is found |
plotdif |
logical; create item plots for items that are displaying DIF according to the
|
type |
the |
simplify |
logical; simplify the output by returning a data.frame object with the differences between AIC, BIC, etc, as well as the chi-squared test (X2) and associated df and p-values |
verbose |
logical print extra information to the console? |
... |
additional arguments to be passed to |
Generally, the pre-computed baseline model should have been configured with two estimation properties: 1) a set of 'anchor' items, where the anchor items have various parameters that have been constrained to be equal across the groups, and 2) contain freely estimated latent mean and variance terms in all but one group (the so-called 'reference' group). These two properties help to fix the metric of the groups so that item parameter estimates do not contain latent distribution characteristics.
a mirt_df
object with the information-based criteria for DIF, though this may be changed
to a list output when return_models
or simplify
are modified. As well, a silent
'DIF_coefficeints'
attribute is included to view the item parameter differences
between the groups
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v048.i06")}
Chalmers, R. P., Counsell, A., and Flora, D. B. (2016). It might not make a big DIF: Improved Differential Test Functioning statistics that account for sampling variability. Educational and Psychological Measurement, 76, 114-140. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0013164415584576")}
multipleGroup
, DRF
## Not run:
# simulate data where group 2 has a smaller slopes and more extreme intercepts
set.seed(12345)
a1 <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d1 <- d2 <- matrix(rnorm(15,0,.7),ncol=1)
a2[1:2, ] <- a1[1:2, ]/3
d1[c(1,3), ] <- d2[c(1,3), ]/4
head(data.frame(a.group1 = a1, a.group2 = a2, d.group1 = d1, d.group2 = d2))
itemtype <- rep('2PL', nrow(a1))
N <- 1000
dataset1 <- simdata(a1, d1, N, itemtype)
dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))
#### no anchors, all items tested for DIF by adding item constrains one item at a time.
# define a parallel cluster (optional) to help speed up internal functions
if(interactive()) mirtCluster()
# Information matrix with Oakes' identity (not controlling for latent group differences)
# NOTE: Without properly equating the groups the following example code is not testing for DIF,
# but instead reflects a combination of DIF + latent-trait distribution effects
model <- multipleGroup(dat, 1, group, SE = TRUE)
# Likelihood-ratio test for DIF (as well as model information)
dif <- DIF(model, c('a1', 'd'))
dif
# function silently includes "DIF_coefficients" attribute to view
# the IRT parameters post-completion
extract.mirt(dif, "DIF_coefficients")
# same as above, but using Wald tests with Benjamini & Hochberg adjustment
DIF(model, c('a1', 'd'), Wald = TRUE, p.adjust = 'fdr')
# equate the groups by assuming the last 5 items have no DIF
itemnames <- colnames(dat)
model <- multipleGroup(dat, 1, group, SE = TRUE,
invariance = c(itemnames[11:ncol(dat)], 'free_means', 'free_var'))
# test whether adding slopes and intercepts constraints results in DIF. Plot items showing DIF
resulta1d <- DIF(model, c('a1', 'd'), plotdif = TRUE, items2test=1:10)
resulta1d
# test whether adding only slope constraints results in DIF for all items
DIF(model, 'a1', items2test=1:10)
# Determine whether it's a1 or d parameter causing DIF (could be joint, however)
(a1s <- DIF(model, 'a1', items2test = 1:3))
(ds <- DIF(model, 'd', items2test = 1:3))
### drop down approach (freely estimating parameters across groups) when
### specifying a highly constrained model with estimated latent parameters
model_constrained <- multipleGroup(dat, 1, group,
invariance = c(colnames(dat), 'free_means', 'free_var'))
dropdown <- DIF(model_constrained, c('a1', 'd'), scheme = 'drop')
dropdown
# View silent "DIF_coefficients" attribute
extract.mirt(dropdown, "DIF_coefficients")
### sequential schemes (add constraints)
### sequential searches using SABIC as the selection criteria
# starting from completely different models
stepup <- DIF(model, c('a1', 'd'), scheme = 'add_sequential',
items2test=1:10)
stepup
# step down procedure for highly constrained model
stepdown <- DIF(model_constrained, c('a1', 'd'), scheme = 'drop_sequential')
stepdown
# view final MG model (only useful when scheme is 'add_sequential')
updated_mod <- DIF(model, c('a1', 'd'), scheme = 'add_sequential',
return_seq_model=TRUE)
plot(updated_mod, type='trace')
###################################
# Multi-group example
a1 <- a2 <- a3 <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d1 <- d2 <- d3 <- matrix(rnorm(15,0,.7),ncol=1)
a2[1:2, ] <- a1[1:2, ]/3
d3[c(1,3), ] <- d2[c(1,3), ]/4
head(data.frame(a.group1 = a1, a.group2 = a2, a.group3 = a3,
d.group1 = d1, d.group2 = d2, d.group3 = d3))
itemtype <- rep('2PL', nrow(a1))
N <- 1000
dataset1 <- simdata(a1, d1, N, itemtype)
dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5))
dataset3 <- simdata(a3, d3, N, itemtype, mu = .2)
dat <- rbind(dataset1, dataset2, dataset3)
group <- gl(3, N, labels = c('g1', 'g2', 'g3'))
# equate the groups by assuming the last 5 items have no DIF
itemnames <- colnames(dat)
model <- multipleGroup(dat, group=group, SE=TRUE,
invariance = c(itemnames[11:ncol(dat)], 'free_means', 'free_var'))
coef(model, simplify=TRUE)
# omnibus tests
dif <- DIF(model, which.par = c('a1', 'd'), items2test=1:9)
dif
# pairwise post-hoc tests for items flagged via omnibus tests
dif.posthoc <- DIF(model, which.par = c('a1', 'd'), items2test=1:2,
pairwise = TRUE)
dif.posthoc
# further probing for df = 1 tests, this time with Wald tests
DIF(model, which.par = c('a1'), items2test=1:2, pairwise = TRUE,
Wald=TRUE)
DIF(model, which.par = c('d'), items2test=1:2, pairwise = TRUE,
Wald=TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.