estfun.AllModelClass | R Documentation |
A function for extracting the empirical estimating functions of a fitted
mirt
, multipleGroup
or bfactor
model. This is the derivative of the log-likelihood with respect to the
parameter vector, evaluated at the observed (case-wise) data. In other
words, this function returns the case-wise scores, evaluated at the fitted
model parameters. Currently, models fitted via the EM
or BL
method are supported. For the computations, the internal Theta
grid of
the model is being used which was already used during the estimation of
the model itself along with its matching normalized density.
estfun.AllModelClass(
x,
weights = extract.mirt(x, "survey.weights"),
centering = FALSE
)
x |
a fitted model object of class |
weights |
by default, the |
centering |
a boolean variable that allows the centering of the case-wise scores (i.e., setting their expected values to 0). If the case-wise scores were obtained from maximum likelihood estimates, this setting does not affect the result. |
An n x k matrix corresponding to n observations and k parameters
Lennart Schneider lennart.sch@web.de; centering argument contributed by Rudolf Debelak (rudolf.debelak@psychologie.uzh.ch)
mirt
, multipleGroup
,
bfactor
## Not run:
# fit a 2PL on the LSAT7 data and get the scores
mod1 <- mirt(expand.table(LSAT7), 1, SE = TRUE, SE.type = "crossprod")
sc1 <- estfun.AllModelClass(mod1)
# get the gradient
colSums(sc1)
# calculate the OPG estimate of the variance-covariance matrix "by hand"
vc1 <- vcov(mod1)
all.equal(crossprod(sc1), chol2inv(chol(vc1)), check.attributes = FALSE)
# fit a multiple group 2PL and do the same as above
group <- rep(c("G1", "G2"), 500)
mod2 <- multipleGroup(expand.table(LSAT7), 1, group, SE = TRUE,
SE.type = "crossprod")
sc2 <- estfun.AllModelClass(mod2)
colSums(sc2)
vc2 <- vcov(mod2)
all.equal(crossprod(sc2), chol2inv(chol(vc2)), check.attributes = FALSE)
# fit a bifactor model with 2 specific factors and do the same as above
mod3 <- bfactor(expand.table(LSAT7), c(2, 2, 1, 1, 2), SE = TRUE,
SE.type = "crossprod")
sc3 <- estfun.AllModelClass(mod3)
colSums(sc3)
vc3 <- vcov(mod3)
all.equal(crossprod(sc3), chol2inv(chol(vc3)), check.attributes = FALSE)
# fit a 2PL not weighting all cases equally
survey.weights <- c(rep(2, sum(LSAT7$freq) / 2), rep(1, sum(LSAT7$freq) / 2))
survey.weights <- survey.weights / sum(survey.weights) * sum(LSAT7$freq)
mod4 <- mirt(expand.table(LSAT7), 1, SE = TRUE, SE.type = "crossprod",
survey.weights = survey.weights)
sc4 <- estfun.AllModelClass(mod4,
weights = extract.mirt(mod4, "survey.weights"))
# get the gradient
colSums(sc4)
# to calculate the OPG estimate of the variance-covariance matrix "by hand",
# the weights must be adjusted by taking their square root
sc4_crp <- estfun.AllModelClass(mod4,
weights = sqrt(extract.mirt(mod4, "survey.weights")))
vc4 <- vcov(mod4)
all.equal(crossprod(sc4_crp), chol2inv(chol(vc4)), check.attributes = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.