itemstats | R Documentation |
Function to compute generic item summary statistics that do not require prior fitting of IRT models. Contains information about coefficient alpha (and alpha if an item is deleted), mean/SD and frequency of total scores, reduced item-total correlations, average/sd of the correlation between items, response frequencies, and conditional mean/sd information given the unweighted sum scores.
itemstats(
data,
group = NULL,
use_ts = TRUE,
proportions = TRUE,
ts.tables = FALSE
)
data |
An object of class |
group |
optional grouping variable to condition on when computing summary information |
use_ts |
logical; include information that is conditional on a meaningful total score? |
proportions |
logical; include response proportion information for each item? |
ts.tables |
logical; include mean/sd summary information pertaining to the unweighted total score? |
Returns a list containing the summary statistics
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v048.i06")}
empirical_plot
# dichotomous data example
LSAT7full <- expand.table(LSAT7)
head(LSAT7full)
itemstats(LSAT7full)
# behaviour with missing data
LSAT7full[1:5,1] <- NA
itemstats(LSAT7full)
# data with no meaningful total score
head(SAT12)
itemstats(SAT12, use_ts=FALSE)
# extra total scores tables
dat <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,
5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
itemstats(dat, ts.tables=TRUE)
# grouping information
group <- gl(2, 300, labels=c('G1', 'G2'))
itemstats(dat, group=group)
#####
# polytomous data example
itemstats(Science)
# polytomous data with missing
newScience <- Science
newScience[1:5,1] <- NA
itemstats(newScience)
# unequal categories
newScience[,1] <- ifelse(Science[,1] == 1, NA, Science[,1])
itemstats(newScience)
merged <- data.frame(LSAT7full[1:392,], Science)
itemstats(merged)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.