marginal_rxx | R Documentation |
Given an estimated model and a prior density function, compute the marginal reliability (Thissen and Wainer, 2001). This is only available for unidimensional tests.
marginal_rxx(mod, density = dnorm, var_theta = 1, ...)
mod |
an object of class |
density |
a density function to use for integration. Default assumes the latent traits are from a normal (Gaussian) distribution |
var_theta |
variance of the Theta distribution (typically 1 for many fitted IRT models) |
... |
additional arguments passed to the density function |
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v048.i06")}
Thissen, D. and Wainer, H. (2001). Test Scoring. Lawrence Erlbaum Associates.
empirical_rxx
, extract.group
, testinfo
dat <- expand.table(deAyala)
mod <- mirt(dat, 1)
# marginal estimate
marginal_rxx(mod)
## Not run:
# empirical estimate (assuming the same prior)
fscores(mod, returnER = TRUE)
# empirical rxx the alternative way, given theta scores and SEs
fs <- fscores(mod, full.scores.SE=TRUE)
head(fs)
empirical_rxx(fs)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.