miscmethods.mlogit | R Documentation |
Miscellaneous methods for 'mlogit' objects.
## S3 method for class 'mlogit'
residuals(object, outcome = TRUE, ...)
## S3 method for class 'mlogit'
df.residual(object, ...)
## S3 method for class 'mlogit'
terms(x, ...)
## S3 method for class 'mlogit'
model.matrix(object, ...)
model.response.mlogit(object, ...)
## S3 method for class 'mlogit'
update(object, new, ...)
## S3 method for class 'mlogit'
print(
x,
digits = max(3, getOption("digits") - 2),
width = getOption("width"),
...
)
## S3 method for class 'mlogit'
logLik(object, ...)
## S3 method for class 'mlogit'
summary(object, ..., type = c("chol", "cov", "cor"))
## S3 method for class 'summary.mlogit'
print(
x,
digits = max(3, getOption("digits") - 2),
width = getOption("width"),
...
)
## S3 method for class 'mlogit'
idx(x, n = NULL, m = NULL)
## S3 method for class 'mlogit'
idx_name(x, n = NULL, m = NULL)
## S3 method for class 'mlogit'
predict(object, newdata = NULL, returnData = FALSE, ...)
## S3 method for class 'mlogit'
fitted(
object,
type = c("outcome", "probabilities", "linpred", "parameters"),
outcome = NULL,
...
)
## S3 method for class 'mlogit'
coef(
object,
subset = c("all", "iv", "sig", "sd", "sp", "chol"),
fixed = FALSE,
...
)
## S3 method for class 'summary.mlogit'
coef(object, ...)
outcome |
a boolean which indicates, for the 'fitted' and the 'residuals' methods whether a matrix (for each choice, one value for each alternative) or a vector (for each choice, only a value for the alternative chosen) should be returned, |
... |
further arguments. |
x , object |
an object of class 'mlogit' |
new |
an updated formula for the 'update' method, |
digits |
the number of digits, |
width |
the width of the printing, |
type |
one of 'outcome' (probability of the chosen alternative), 'probabilities' (probabilities for all the alternatives), 'parameters' for individual-level random parameters for the fitted method, how the correlated random parameters should be displayed : '"chol"' for the estimated parameters (the elements of the Cholesky decomposition matrix), '"cov"' for the covariance matrix and '"cor"' for the correlation matrix and the standard deviations, |
n , m |
see [dfidx::idx()] |
newdata |
a 'data.frame' for the 'predict' method, |
returnData |
for the 'predict' method, if 'TRUE', the data is returned as an attribute, |
subset |
an optional vector of coefficients to extract for the 'coef' method, |
fixed |
if 'FALSE' (the default), constant coefficients are not returned, |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.