Nothing
#' @title BayesianLinearRegression
#'
#' @description
#' An implementation of the bayesian linear regression.
#'
#' @param center Center the data and fit the intercept if enabled. Default
#' value "FALSE" (logical).
#' @param input Matrix of covariates (X) (numeric matrix).
#' @param input_model Trained BayesianLinearRegression model to use
#' (BayesianLinearRegression).
#' @param responses Matrix of responses/observations (y) (numeric row).
#' @param scale Scale each feature by their standard deviations if enabled.
#' Default value "FALSE" (logical).
#' @param test Matrix containing points to regress on (test points)
#' (numeric matrix).
#' @param verbose Display informational messages and the full list of
#' parameters and timers at the end of execution. Default value
#' "getOption("mlpack.verbose", FALSE)" (logical).
#'
#' @return A list with several components:
#' \item{output_model}{Output BayesianLinearRegression model
#' (BayesianLinearRegression).}
#' \item{predictions}{If --test_file is specified, this file is where the
#' predicted responses will be saved (numeric matrix).}
#' \item{stds}{If specified, this is where the standard deviations of the
#' predictive distribution will be saved (numeric matrix).}
#'
#' @details
#' An implementation of the bayesian linear regression.
#' This model is a probabilistic view and implementation of the linear
#' regression. The final solution is obtained by computing a posterior
#' distribution from gaussian likelihood and a zero mean gaussian isotropic
#' prior distribution on the solution.
#' Optimization is AUTOMATIC and does not require cross validation. The
#' optimization is performed by maximization of the evidence function.
#' Parameters are tuned during the maximization of the marginal likelihood. This
#' procedure includes the Ockham's razor that penalizes over complex solutions.
#'
#' This program is able to train a Bayesian linear regression model or load a
#' model from file, output regression predictions for a test set, and save the
#' trained model to a file.
#'
#' To train a BayesianLinearRegression model, the "input" and
#' "responses"parameters must be given. The "center"and "scale" parameters
#' control the centering and the normalizing options. A trained model can be
#' saved with the "output_model". If no training is desired at all, a model can
#' be passed via the "input_model" parameter.
#'
#' The program can also provide predictions for test data using either the
#' trained model or the given input model. Test points can be specified with
#' the "test" parameter. Predicted responses to the test points can be saved
#' with the "predictions" output parameter. The corresponding standard deviation
#' can be save by precising the "stds" parameter.
#'
#' @author
#' mlpack developers
#'
#' @export
#' @examples
#' # For example, the following command trains a model on the data "data" and
#' # responses "responses"with center set to true and scale set to false (so,
#' # Bayesian linear regression is being solved, and then the model is saved to
#' # "blr_model":
#'
#' \dontrun{
#' output <- bayesian_linear_regression(input=data, responses=responses,
#' center=1, scale=0)
#' blr_model <- output$output_model
#' }
#'
#' # The following command uses the "blr_model" to provide predicted responses
#' # for the data "test" and save those responses to "test_predictions":
#'
#' \dontrun{
#' output <- bayesian_linear_regression(input_model=blr_model, test=test)
#' test_predictions <- output$predictions
#' }
#'
#' # Because the estimator computes a predictive distribution instead of a
#' # simple point estimate, the "stds" parameter allows one to save the
#' # prediction uncertainties:
#'
#' \dontrun{
#' output <- bayesian_linear_regression(input_model=blr_model, test=test)
#' test_predictions <- output$predictions
#' stds <- output$stds
#' }
bayesian_linear_regression <- function(center=FALSE,
input=NA,
input_model=NA,
responses=NA,
scale=FALSE,
test=NA,
verbose=getOption("mlpack.verbose", FALSE)) {
# Create parameters and timers objects.
p <- CreateParams("bayesian_linear_regression")
t <- CreateTimers()
# Initialize an empty list that will hold all input models the user gave us,
# so that we don't accidentally create two XPtrs that point to thesame model.
inputModels <- vector()
# Process each input argument before calling the binding.
if (!identical(center, FALSE)) {
SetParamBool(p, "center", center)
}
if (!identical(input, NA)) {
SetParamMat(p, "input", to_matrix(input), TRUE)
}
if (!identical(input_model, NA)) {
SetParamBayesianLinearRegressionPtr(p, "input_model", input_model)
# Add to the list of input models we received.
inputModels <- append(inputModels, input_model)
}
if (!identical(responses, NA)) {
SetParamRow(p, "responses", to_matrix(responses))
}
if (!identical(scale, FALSE)) {
SetParamBool(p, "scale", scale)
}
if (!identical(test, NA)) {
SetParamMat(p, "test", to_matrix(test), TRUE)
}
if (!identical(verbose, FALSE)) {
SetParamBool(p, "verbose", verbose)
}
# Mark all output options as passed.
SetPassed(p, "output_model")
SetPassed(p, "predictions")
SetPassed(p, "stds")
# Call the program.
bayesian_linear_regression_call(p, t)
# Add ModelType as attribute to the model pointer, if needed.
output_model <- GetParamBayesianLinearRegressionPtr(p, "output_model", inputModels)
attr(output_model, "type") <- "BayesianLinearRegression"
# Extract the results in order.
out <- list(
"output_model" = output_model,
"predictions" = GetParamMat(p, "predictions"),
"stds" = GetParamMat(p, "stds")
)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.