Nothing
#' @title Hidden Markov Model (HMM) Sequence Generator
#'
#' @description
#' A utility to generate random sequences from a pre-trained Hidden Markov Model
#' (HMM). The length of the desired sequence can be specified, and a random
#' sequence of observations is returned.
#'
#' @param length Length of sequence to generate (integer).
#' @param model Trained HMM to generate sequences with (HMMModel).
#' @param seed Random seed. If 0, 'std::time(NULL)' is used. Default
#' value "0" (integer).
#' @param start_state Starting state of sequence. Default value "0"
#' (integer).
#' @param verbose Display informational messages and the full list of
#' parameters and timers at the end of execution. Default value
#' "getOption("mlpack.verbose", FALSE)" (logical).
#'
#' @return A list with several components:
#' \item{output}{Matrix to save observation sequence to (numeric matrix).}
#' \item{state}{Matrix to save hidden state sequence to (integer matrix).}
#'
#' @details
#' This utility takes an already-trained HMM, specified as the "model"
#' parameter, and generates a random observation sequence and hidden state
#' sequence based on its parameters. The observation sequence may be saved with
#' the "output" output parameter, and the internal state sequence may be saved
#' with the "state" output parameter.
#'
#' The state to start the sequence in may be specified with the "start_state"
#' parameter.
#'
#' @author
#' mlpack developers
#'
#' @export
#' @examples
#' # For example, to generate a sequence of length 150 from the HMM "hmm" and
#' # save the observation sequence to "observations" and the hidden state
#' # sequence to "states", the following command may be used:
#'
#' \dontrun{
#' output <- hmm_generate(model=hmm, length=150)
#' observations <- output$output
#' states <- output$state
#' }
hmm_generate <- function(length,
model,
seed=NA,
start_state=NA,
verbose=getOption("mlpack.verbose", FALSE)) {
# Create parameters and timers objects.
p <- CreateParams("hmm_generate")
t <- CreateTimers()
# Initialize an empty list that will hold all input models the user gave us,
# so that we don't accidentally create two XPtrs that point to thesame model.
inputModels <- vector()
# Process each input argument before calling the binding.
SetParamInt(p, "length", length)
SetParamHMMModelPtr(p, "model", model)
if (!identical(seed, NA)) {
SetParamInt(p, "seed", seed)
}
if (!identical(start_state, NA)) {
SetParamInt(p, "start_state", start_state)
}
if (!identical(verbose, FALSE)) {
SetParamBool(p, "verbose", verbose)
}
# Mark all output options as passed.
SetPassed(p, "output")
SetPassed(p, "state")
# Call the program.
hmm_generate_call(p, t)
# Add ModelType as attribute to the model pointer, if needed.
# Extract the results in order.
out <- list(
"output" = GetParamMat(p, "output"),
"state" = GetParamUMat(p, "state")
)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.