Nothing
#' @title Image Converter
#'
#' @description
#' A utility to load an image or set of images into a single dataset that can
#' then be used by other mlpack methods and utilities. This can also unpack an
#' image dataset into individual files, for instance after mlpack methods have
#' been used.
#'
#' @param input Image filenames which have to be loaded/saved (character
#' vector).
#' @param channels Number of channels in the image. Default value "0"
#' (integer).
#' @param dataset Input matrix to save as images (numeric matrix).
#' @param height Height of the images. Default value "0" (integer).
#' @param quality Compression of the image if saved as jpg (0-100).
#' Default value "90" (integer).
#' @param save Save a dataset as images. Default value "FALSE" (logical).
#' @param verbose Display informational messages and the full list of
#' parameters and timers at the end of execution. Default value
#' "getOption("mlpack.verbose", FALSE)" (logical).
#' @param width Width of the image. Default value "0" (integer).
#'
#' @return A list with several components:
#' \item{output}{Matrix to save images data to, Onlyneeded if you are
#' specifying 'save' option (numeric matrix).}
#'
#' @details
#' This utility takes an image or an array of images and loads them to a matrix.
#' You can optionally specify the height "height" width "width" and channel
#' "channels" of the images that needs to be loaded; otherwise, these parameters
#' will be automatically detected from the image.
#' There are other options too, that can be specified such as "quality".
#'
#' You can also provide a dataset and save them as images using "dataset" and
#' "save" as an parameter.
#'
#' @author
#' mlpack developers
#'
#' @export
#' @examples
#' # An example to load an image :
#'
#' \dontrun{
#' output <- image_converter(input=X, height=256, width=256, channels=3)
#' Y <- output$output
#' }
#'
#' # An example to save an image is :
#'
#' \dontrun{
#' image_converter(input=X, height=256, width=256, channels=3, dataset=Y,
#' save=TRUE)
#' }
image_converter <- function(input,
channels=NA,
dataset=NA,
height=NA,
quality=NA,
save=FALSE,
verbose=getOption("mlpack.verbose", FALSE),
width=NA) {
# Create parameters and timers objects.
p <- CreateParams("image_converter")
t <- CreateTimers()
# Initialize an empty list that will hold all input models the user gave us,
# so that we don't accidentally create two XPtrs that point to thesame model.
inputModels <- vector()
# Process each input argument before calling the binding.
SetParamVecString(p, "input", input)
if (!identical(channels, NA)) {
SetParamInt(p, "channels", channels)
}
if (!identical(dataset, NA)) {
SetParamMat(p, "dataset", to_matrix(dataset), TRUE)
}
if (!identical(height, NA)) {
SetParamInt(p, "height", height)
}
if (!identical(quality, NA)) {
SetParamInt(p, "quality", quality)
}
if (!identical(save, FALSE)) {
SetParamBool(p, "save", save)
}
if (!identical(verbose, FALSE)) {
SetParamBool(p, "verbose", verbose)
}
if (!identical(width, NA)) {
SetParamInt(p, "width", width)
}
# Mark all output options as passed.
SetPassed(p, "output")
# Call the program.
image_converter_call(p, t)
# Add ModelType as attribute to the model pointer, if needed.
# Extract the results in order.
out <- list(
"output" = GetParamMat(p, "output")
)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.