Nothing
#' @title Parametric Naive Bayes Classifier
#'
#' @description
#' An implementation of the Naive Bayes Classifier, used for classification.
#' Given labeled data, an NBC model can be trained and saved, or, a pre-trained
#' model can be used for classification.
#'
#' @param incremental_variance The variance of each class will be
#' calculated incrementally. Default value "FALSE" (logical).
#' @param input_model Input Naive Bayes model (NBCModel).
#' @param labels A file containing labels for the training set (integer
#' row).
#' @param test A matrix containing the test set (numeric matrix).
#' @param training A matrix containing the training set (numeric matrix).
#' @param verbose Display informational messages and the full list of
#' parameters and timers at the end of execution. Default value
#' "getOption("mlpack.verbose", FALSE)" (logical).
#'
#' @return A list with several components:
#' \item{output_model}{File to save trained Naive Bayes model to
#' (NBCModel).}
#' \item{predictions}{The matrix in which the predicted labels for the test
#' set will be written (integer row).}
#' \item{probabilities}{The matrix in which the predicted probability of
#' labels for the test set will be written (numeric matrix).}
#'
#' @details
#' This program trains the Naive Bayes classifier on the given labeled training
#' set, or loads a model from the given model file, and then may use that
#' trained model to classify the points in a given test set.
#'
#' The training set is specified with the "training" parameter. Labels may be
#' either the last row of the training set, or alternately the "labels"
#' parameter may be specified to pass a separate matrix of labels.
#'
#' If training is not desired, a pre-existing model may be loaded with the
#' "input_model" parameter.
#'
#'
#'
#' The "incremental_variance" parameter can be used to force the training to use
#' an incremental algorithm for calculating variance. This is slower, but can
#' help avoid loss of precision in some cases.
#'
#' If classifying a test set is desired, the test set may be specified with the
#' "test" parameter, and the classifications may be saved with the
#' "predictions"predictions parameter. If saving the trained model is desired,
#' this may be done with the "output_model" output parameter.
#'
#' @author
#' mlpack developers
#'
#' @export
#' @examples
#' # For example, to train a Naive Bayes classifier on the dataset "data" with
#' # labels "labels" and save the model to "nbc_model", the following command
#' # may be used:
#'
#' \dontrun{
#' output <- nbc(training=data, labels=labels)
#' nbc_model <- output$output_model
#' }
#'
#' # Then, to use "nbc_model" to predict the classes of the dataset "test_set"
#' # and save the predicted classes to "predictions", the following command may
#' # be used:
#'
#' \dontrun{
#' output <- nbc(input_model=nbc_model, test=test_set)
#' predictions <- output$predictions
#' }
nbc <- function(incremental_variance=FALSE,
input_model=NA,
labels=NA,
test=NA,
training=NA,
verbose=getOption("mlpack.verbose", FALSE)) {
# Create parameters and timers objects.
p <- CreateParams("nbc")
t <- CreateTimers()
# Initialize an empty list that will hold all input models the user gave us,
# so that we don't accidentally create two XPtrs that point to thesame model.
inputModels <- vector()
# Process each input argument before calling the binding.
if (!identical(incremental_variance, FALSE)) {
SetParamBool(p, "incremental_variance", incremental_variance)
}
if (!identical(input_model, NA)) {
SetParamNBCModelPtr(p, "input_model", input_model)
# Add to the list of input models we received.
inputModels <- append(inputModels, input_model)
}
if (!identical(labels, NA)) {
SetParamURow(p, "labels", to_matrix(labels))
}
if (!identical(test, NA)) {
SetParamMat(p, "test", to_matrix(test), TRUE)
}
if (!identical(training, NA)) {
SetParamMat(p, "training", to_matrix(training), TRUE)
}
if (!identical(verbose, FALSE)) {
SetParamBool(p, "verbose", verbose)
}
# Mark all output options as passed.
SetPassed(p, "output_model")
SetPassed(p, "predictions")
SetPassed(p, "probabilities")
# Call the program.
nbc_call(p, t)
# Add ModelType as attribute to the model pointer, if needed.
output_model <- GetParamNBCModelPtr(p, "output_model", inputModels)
attr(output_model, "type") <- "NBCModel"
# Extract the results in order.
out <- list(
"output_model" = output_model,
"predictions" = GetParamURow(p, "predictions"),
"probabilities" = GetParamMat(p, "probabilities")
)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.